"This text provides an excellent entry point into virtual knot theory for undergraduates. Beginning with few prerequisites, the reader will advance to master the combinatorial and algebraic techniques that are most often employed in the literature. A student-centered book on the multiverse of knots (i.e., virtual knots, flat knots, free knots, welded knots, and pseudo knots) has long been awaited. The text aims not only to advertise recent developments in the field but to bring students to a point where they can begin thinking about interesting problems on their own. Each chapter contains not only exercises but projects, lists of open problems, and a carefully curated reading list. Students preparing to embark on an undergraduate research project in knot theory or virtual knot theory will greatly benefit from reading this well-written book!"
-Micah Chrisman, Ph.D., Associate Professor, Monmouth University
"This book will be greatly helpful and perfect for undergraduate and graduate students to study knot theory and see how ideas and techniques of mathematics learned at colleges or universities are used in research. Virtual knots are a hot topic in knot theory. By comparing virtual with classical, the book enables readers to understand the essence more easily and clearly."
-Seiichi Kamada, Vice-Director of Osaka City University Advanced Mathematical Institute and Professor of Mathematics, Osaka City University
"This text provides an excellent entry point into virtual knot theory for undergraduates. Beginning with few prerequisites, the reader will advance to master the combinatorial and algebraic techniques that are most often employed in the literature. A student-centered book on the multiverse of knots (i.e., virtual knots, flat knots, free knots, welded knots, and pseudo knots) has long been awaited. The text aims not only to advertise recent developments in the field but to bring students to a point where they can begin thinking about interesting problems on their own. Each chapter contains not only exercises but projects, lists of open problems, and a carefully curated reading list. Students preparing to embark on an undergraduate research project in knot theory or virtual knot theory will greatly benefit from reading this well-written book!"
-Micah Chrisman, Ph.D., Associate Professor, Monmouth University
"This book will be greatly helpful and perfect for undergraduate and graduate students to study knot theory and see how ideas and techniques of mathematics learned at colleges or universities are used in research. Virtual knots are a hot topic in knot theory. By comparing virtual with classical, the book enables readers to understand the essence more easily and clearly."
-Seiichi Kamada, Vice-Director of Osaka City University Advanced Mathematical Institute and Professor of Mathematics, Osaka City University
"This is an excellent and well-organized introduction to classical and virtual knot theory that makes these subjects accessible to interested persons who may be unacquainted with point set topology or algebraic topology. The prerequisites for reading the book are a familiarity with basic college algebra and then later some abstract algebra and a familiarity or willingness to work with graphs (in the sense of graph theory) and pictorial diagrams (for knots and links) that are related to graphs. With this much background the book develops related topological themes such as knot polynomials, surfaces and quandles in a self-contained and clear manner. The subject of virtual knot theory is relatively new, having been introduced by Kauffman and by Goussarov, Polyak and Viro around 1996. Virtual knot theory can be learned right along with classical knot theory, as this book demonstrates, and it is a current research topic as well. So this book, elementary as it is, brings the reader right up to the frontier of present work in the theory of knots. It is exciting that knot theory, like graph theory, affords this possibility of stepping forward into the creative unknown."
-Louis H. Kauffman, Professor of Mathematics, University of Illinois at Chicago