Get Free Shipping on orders over $79
Approximate Solutions of Common Fixed-Point Problems : Springer Optimization and Its Applications : Book 112 - Alexander J. Zaslavski

Approximate Solutions of Common Fixed-Point Problems

By: Alexander J. Zaslavski

eText | 30 June 2016

At a Glance

eText


$169.00

or 4 interest-free payments of $42.25 with

 or 

Instant online reading in your Booktopia eTextbook Library *

Why choose an eTextbook?

Instant Access *

Purchase and read your book immediately

Read Aloud

Listen and follow along as Bookshelf reads to you

Study Tools

Built-in study tools like highlights and more

* eTextbooks are not downloadable to your eReader or an app and can be accessed via web browsers only. You must be connected to the internet and have no technical issues with your device or browser that could prevent the eTextbook from operating.

This book presents results on the convergence behavior of algorithms which are known as vital tools for solving convex feasibility problems and common fixed point problems. The main goal for us in dealing with a known computational error is to find what approximate solution can be obtained and how many iterates one needs to find it. According to know results, these algorithms should converge to a solution. In this exposition, these algorithms are studied, taking into account computational errors which remain consistent in practice. In this case the convergence to a solution does not take place. We show that our algorithms generate a good approximate solution if computational errors are bounded from above by a small positive constant.

Beginning with an introduction, this monograph moves on to study:

· dynamic string-averaging methods for common fixed point problems in a Hilbert space

· dynamic string methods for common fixed point problems in a metric space<

· dynamic string-averaging version of the proximal algorithm

· common fixed point problems in metric spaces

· common fixed point problems in the spaces with distances of the Bregman type

· a proximal algorithm for finding a common zero of a family of maximal monotone operators

· subgradient projections algorithms for convex feasibility problems in Hilbert spaces

on
Desktop
Tablet
Mobile

More in Functional Analysis & Transforms

Modern Topics in Metrical Fixed Point Theory - Mihai Turinici

eBOOK