Preface | p. vii |
Euclidean Barycentric Coordinates and the Classic Triangle Centers | p. 1 |
Points, Lines, Distance and Isometries | p. 2 |
Vectors, Angles and Triangles | p. 5 |
Euclidean Barycentric Coordinates | p. 8 |
Analogies with Classical Mechanics | p. 11 |
Barycentric Representations are Covariant | p. 12 |
Vector Barycentric Representation | p. 14 |
Triangle Centroid | p. 17 |
Triangle Altitude | p. 19 |
Triangle Orthocenter | p. 24 |
Triangle Incenter | p. 27 |
Triangle Inradius | p. 33 |
Triangle Circumcenter | p. 36 |
Circumradius | p. 40 |
Triangle Incircle and Excircles | p. 42 |
Excircle Tangency Points | p. 47 |
From Triangle Tangency Points to Triangle Centers | p. 52 |
Triangle In-Exradii | p. 55 |
A Step Toward the Comparative Study | p. 57 |
Tetrahedron Altitude | p. 58 |
Tetrahedron Altitude Length | p. 62 |
Exercises | p. 63 |
Gyrovector Spaces and Cartesian Models of Hyperbolic Geometry | p. 65 |
Einstein Addition | p. 66 |
Einstein Gyration | p. 70 |
From Einstein Velocity Addition to Gyrogroups | p. 73 |
First Gyrogroup Theorems | p. 77 |
The Two Basic Equations of Gyrogroups | p. 82 |
Einstein Gyrovector Spaces | p. 86 |
Gyrovector Spaces | p. 89 |
Einstein Points, Gyrolines and Gyrodistance | p. 95 |
Linking Einstein Addition to Hyperbolic Geometry | p. 99 |
Einstein Gyrovectors, Gyroangles and Gyrotriangles | p. 101 |
The Law of Gyrocosines | p. 106 |
The SSS to AAA Conversion Law | p. 108 |
Inequalities for Gyrotriangles | p. 109 |
The AAA to SSS Conversion Law | p. 111 |
The Law of Gyrosines | p. 115 |
The ASA to SAS Conversion Law | p. 115 |
Gyrotriangle Defect | p. 116 |
Right Gyrotriangles | p. 118 |
Einstein Gyrotrigonometry and Gyroarea | p. 120 |
Gyrotriangle Gyroarea Addition Law | p. 124 |
Gyrodistance Between a Point and a Gyroline | p. 127 |
The Gyroangle Bisector Theorem | p. 133 |
Möbius Addition and Möbius Gyrogroups | p. 135 |
Möbius Gyration | p. 136 |
Möbius Gyrovector Spaces | p. 138 |
Möbius Points, Gyrolines and Gyrodistance | p. 139 |
Linking Möbius Addition to Hyperbolic Geometry | p. 142 |
Möbius Gyrovectors, Gyroangles and Gyrotriangles | p. 143 |
Gyrovector Space Isomorphism | p. 148 |
Möbius Gyrotrigonometry | p. 153 |
Exercises | p. 155 |
The Interplay of Einstein Addition and Vector Addition | p. 157 |
Extension of Rns into Tn+1s | p. 157 |
Scalar Multiplication and Addition in Tn+1s | p. 162 |
Inner Product and Norm in Tn+1s | p. 163 |
Unit Elements of Tn+1 | p. 165 |
From Tn+1s back to Rns | p. 173 |
Hyperbolic Barycentric Coordinates and Hyperbolic Triangle Centers | p. 179 |
Gyrobarycentric Coordinates in Einstein Gyrovector Spaces | p. 179 |
Analogies with Relativistic Mechanics | p. 183 |
Gyrobarycentric Coordinates in Möbius Gyrovector Spaces | p. 184 |
Einstein Gyromidpoint | p. 187 |
Möbius Gyromidpoint | p. 189 |
Einstein Gyrotriangle Gyrocentroid | p. 190 |
Einstein Gyrotetrahedron Gyrocentroid | p. 197 |
Möbius Gyrotriangle Gyrocentroid | p. 199 |
Möbius Gyrotetrahedron Gyrocentroid | p. 200 |
Foot of a Gyrotriangle Gyroaltitude | p. 201 |
Einstein Point to Gyroline Gyrodistance | p. 205 |
Möbius Point to Gyroline Gyrodistance | p. 207 |
Einstein Gyrotriangle Orthogyrocenter | p. 209 |
Möbius Gyrotriangle Orthogyrocenter | p. 219 |
Foot of a Gyrotriangle Gyroangle Bisector | p. 224 |
Einstein Gyrotriangle Ingyrocenter | p. 229 |
Ingyrocenter to Gyrotriangle Side Gyrodistance | p. 237 |
Möbius Gyrotriangle Ingyrocenter | p. 240 |
Einstein Gyrotriangle Circumgyrocenter | p. 244 |
Einstein Gyrotriangle Circumgyroradius | p. 249 |
Möbius Gyrotriangle Circumgyrocenter | p. 250 |
Comparative Study of Gyrotriangle Gyrocenters | p. 253 |
Exercises | p. 257 |
Hyperbolic Incircles and Excircles | p. 259 |
Einstein Gyrotriangle Ingyrocenter and Exgyrocenters | p. 259 |
Einstein Ingyrocircle and Exgyrocircle Tangency Points | p. 265 |
Useful Gyrotriangle Gyrotrigonometric Relations | p. 268 |
The Tangency Points Expressed Gyrotrigonometrically | p. 269 |
Möbius Gyrotriangle Ingyrocenter and Exgyrocenters | p. 275 |
From Gyrotriangle Tangency Points to Gyrotriangle Gyrocenters | p. 280 |
Exercises | p. 283 |
Hyperbolic Tetrahedra | p. 285 |
Gyrotetrahedron Gyroaltitude | p. 285 |
Point Gyroplane Relations | p. 294 |
Gyrotetrahedron Ingyrocenter and Exgyrocenters | p. 296 |
In-Exgyrosphere Tangency Points | p. 305 |
Gyrotrigonometric Gyrobarycentric Coordinates for the Gyrotetrahedron In-Exgyrocenters | p. 307 |
Gyrotetrahedron Circumgyrocenter | p. 316 |
Exercises | p. 320 |
Comparative Patterns | p. 323 |
Gyromidpoints and Gyrocentroids | p. 323 |
Two and Three Dimensional Ingyrocenters | p. 326 |
Two and Three Dimensional Circumgyrocenters | p. 328 |
Tetrahedron Incenter and Excenters | p. 329 |
Comparative study of the Pythagorean Theorem | p. 331 |
Hyperbolic Heron's Formula | p. 333 |
Exercises | p. 334 |
Notation And Special Symbols | p. 335 |
Bibliography | p. 337 |
Index | p. 341 |
Table of Contents provided by Ingram. All Rights Reserved. |