"Overall, this is an excellent text that is highly appropriate for undergraduate students. I am a really big fan of Chapter 2. The authors introduce the concepts of likelihood and model comparisons via likelihood in a very gentle and intuitive way. It will be very useful for the wide audience anticipated for the course we are designing. In Chapter 4, the authors do an excellent job discussing some of the common 'extensions' of Poisson regression that are likely to be observed in practice (overdispersion and ZIP). In particular, they do an excellent job describing situations that might lead to zero-inflate Poissons. The use of case studies across all chapters is a major strength of the textbook."
-Jessica Chapman, St. Lawrence University
"This text would be ideal for statistics undergrad majors & minors as a 2nd or 3rd course in statistics...In particular, this book intuitively covers many topics without delving into technical proofs and details which are not needed for successful application of the methods described. It is a strength that it uses the software R. Use of R is a skill welcomed in any industry, and is not a burden for students to obtain. The book emphasizes methods as well as numerical literacy. For example, it guides the student in how to assess the appropriateness of methods (e.g. assumptions of linear model), not just the use and interpretation of the results. There is a strong focus on understanding and checking assumptions, as well as the effect violations of those assumptions will have on the result. I think this may be an effective way to train the reader to think like a statistician, without overwhelming the reader with technical details." ---Kirsten Eilertson, Colorado State University
"Overall, this is an excellent text that is highly appropriate for undergraduate students. I am a really big fan of Chapter 2. The authors introduce the concepts of likelihood and model comparisons via likelihood in a very gentle and intuitive way. It will be very useful for the wide audience anticipated for the course we are designing. In Chapter 4, the authors do an excellent job discussing some of the common 'extensions' of Poisson regression that are likely to be observed in practice (overdispersion and ZIP). In particular, they do an excellent job describing situations that might lead to zero-inflate Poissons.
The use of case studies across all chapters is a major strength of the textbook." (Jessica Chapman, St. Lawrence University)
"This text would be ideal for statistics undergrad majors & minors as a 2nd or 3rd course in statistics...In particular, this book intuitively covers many topics without delving into technical proofs and details which are not needed for successful application of the methods described. It is a strength that it uses the software R. Use of R is a skill welcomed in any industry, and is not a burden for students to obtain. The book emphasizes methods as well as numerical literacy. For example, it guides the student in how to assess the appropriateness of methods (e.g. assumptions of linear model), not just the use and interpretation of the results. There is a strong focus on understanding and checking assumptions, as well as the effect violations of those assumptions will have on the result. I think this may be an effective way to train the reader to think like a statistician, without overwhelming the reader with technical details." (Kirsten Eilertson, Colorado State University)
Kirsten.Eilertson@colostate.edu
"There are a lot of books about linear models, but it is not that common to find a really good book about this interesting and complex subject. The book Beyond Multiple Linear Regression: Applied Generalized Linear Models and Multilevel Models in R can for sure be included in this category of good books about linear models"
- David Manteigas, International Society for Clinical Biostatistics, 72, 2021