Contents
Preface xi
Abdourrahmane M. ATTO, Francesca BOVOLO and Lorenzo BRUZZONE
List of Notations
Chapter 1 Unsupervised Change Detection in Multitemporal Remote Sensing Images 1
Sicong LIU, Francesca BOVOLO, Lorenzo BRUZZONE, QianDU
and Xiaohua TONG
1.1. Introduction 1
1.2. Unsupervised change detection in multispectral images 3
1.2.1.Relatedconcepts 3
1.2.2.Openissuesandchallenges 7
1.2.3. Spectral–spatial unsupervised CD techniques 7
1.3 Unsupervised multiclass change detection approaches based on modelingspectral–spatialinformation 9
1.3.1 Sequential spectral change vector analysis (S 2 CVA) 9
1.3.2. Multiscale morphological compressed change vector analysis 11
1.3.3. Superpixel-level compressed change vector analysis 15
1.4.Datasetdescriptionandexperimentalsetup 18
1.4.1.Datasetdescription 18
1.4.2.Experimentalsetup 22
1.5.Resultsanddiscussion 24
1.5.1.ResultsontheXuzhoudataset 24
1.5.2. Results on the Indonesia tsunami dataset 24
xv
1.6.Conclusion 28
1.7.Acknowledgements 29
1.8.References 29
Chapter 2 Change Detection in Time Series of Polarimetric SAR Images 35
Knut CONRADSEN, Henning SKRIVER, MortonJ.CANTY
andAllanA.NIELSEN
2.1. Introduction 35
2.1.1.Theproblem 36
2.1.2 Important concepts illustrated by means of the gamma distribution 39
2.2.Testtheoryandmatrixordering 45
2.2.1. Test for equality of two complex Wishart distributions 45
2.2.2. Test for equality of k-complex Wishart distributions 47
2.2.3. The block diagonal case 49
2.2.4.TheLoewnerorder 52
2.3.Thebasicchangedetectionalgorithm 53
2.4.Applications 55
2.4.1.Visualizingchanges 58
2.4.2.Fieldwisechangedetection 59
2.4.3. Directional changes using the Loewner ordering 62
2.4.4. Software availability 65
2.5.References 70
Chapter 3 An Overview of Covariance-based Change Detection Methodologies in Multivariate SAR Image Time Series 73
Ammar MIAN, Guillaume GINOLHAC, Jean-Philippe OVARLEZ,
Arnaud BRELOY and Frederic PASCAL
3.1. Introduction 73
3.2.Datasetdescription 76
3.3.StatisticalmodelingofSARimages 77
3.3.1.Thedata 77
3.3.2.Gaussianmodel 77
3.3.3.Non-Gaussianmodeling 83
3.4.Dissimilaritymeasures 84
3.4.1.Problemformulation 84
3.4.2. Hypothesis testing statistics 85
3.4.3.Information-theoreticmeasures 87
3.4.4.Riemanniangeometrydistances 89
3.4.5.Optimaltransport 90
3.4.6.Summary 91
3.4.7. Results of change detectors on the UAVSAR dataset 91
3.5. Change detection based on structured covariances 94
3.5.1. Low-rank Gaussian change detector 96
3.5.2. Low-rank compound Gaussian change detector 97
3.5.3. Results of low-rank change detectors on the UAVSAR dataset 100
3.6.Conclusion 102
3.7.References 103
Chapter 4 Unsupervised Functional Information Clustering in Extreme Environments from Filter Banks and Relative Entropy 109
Abdourrahmane M. ATTO, Fatima KARBOU, Sophie GIFFARD-ROISIN
and Lionel BOMBRUN
4.1. Introduction 109
4.2.Parametricmodelingofconvnetfeatures 110
4.3.Anomalydetectioninimagetimeseries 113
4.4.Functionalimagetimeseriesclustering 119
4.5.Conclusion 123
4.6.References 123
Chapter 5 Thresholds and Distances to Better Detect Wet Snow over Mountains with Sentinel-1 Image Time Series 127
Fatima KARBOU, Guillaume JAMES, Philippe DURAND
and Abdourrahmane M. ATTO
5.1. Introduction 127
5.2.Testareaanddata 129
5.3.WetsnowdetectionusingSentinel-1 129
5.4.Metricstodetectwetsnow 133
5.5.Discussion 138
5.6.Conclusion 143
5.7.Acknowledgements 143
5.8.References 143
Chapter 6 Fractional Field Image Time Series Modeling and Application to Cyclone Tracking 145
Abdourrahmane M. ATTO, Aluisio PINHEIRO, Guillaume GINOLHAC
and Pedro MORETTIN
6.1. Introduction 145
6.2. Random field model of a cyclone texture 148
6.2.1.Cyclonetexturefeature 149
6.2.2. Wavelet-based power spectral densities and cyclone fields 150
6.2.3. Fractional spectral power decay model 153
6.3.Cyclonefieldeyedetectionandtracking 157
6.3.1.Cycloneeyedetection 157
6.3.2.Dynamicfractalfieldeyetracking 158
6.4. Cyclone field intensity evolution prediction 159
6.5.Discussion 161
6.6.Acknowledgements 163
6.7.References 163
Chapter 7 Graph of Characteristic Points for Texture Tracking: Application to Change Detection and Glacier Flow Measurement from SAR Images 167
Minh-Tan PHAM and Gregoire MERCIER
7.1. Introduction 167
7.2. Texture representation and characterization using local extrema 169
7.2.1.Motivationandapproach 169
7.2.2. Local extrema keypoints within SAR images 172
7.3.Unsupervisedchangedetection 175
7.3.1. Proposed framework 175
7.3.2. Weighted graph construction from keypoints 176
7.3.3.Changemeasure(CM)generation 178
7.4.Experimentalstudy 179
7.4.1. Data description and evaluation criteria 179
7.4.2.Changedetectionresults 181
7.4.3.Sensitivitytoparameters 185
7.4.4.ComparisonwiththeNLMmodel 188
7.4.5. Analysis of the algorithm complexity 191
7.5.Applicationtoglacierflowmeasurement 192
7.5.1. Proposed method 193
7.5.2.Results 194
7.6.Conclusion 196
7.7.References 197
Chapter 8 Multitemporal Analysis of Sentinel-1/2 Images for Land Use Monitoring at Regional Scale 201
Andrea GARZELLI and Claudia ZOPPETTI
8.1. Introduction 201
8.2. Proposed method 203
8.2.1.Testsiteanddata 206
8.3.SARprocessing 209
8.4.Opticalprocessing 215
8.5.Combinationlayer 217
8.6.Results 219
8.7.Conclusion 220
8.8.References 221
Chapter 9 Statistical Difference Models for Change Detection in Multispectral Images 223
Massimo ZANETTI, Francesca BOVOLO and Lorenzo BRUZZONE
9.1. Introduction 223
9.2. Overview of the change detection problem 225
9.2.1. Change detection methods for multispectral images 227
9.2.2. Challenges addressed in this chapter 230
9.3 The Rayleigh–Rice mixture model for the magnitude of the differenceimage 231
9.3.1. Magnitude image statistical mixture model 231
9.3.2.Bayesiandecision 233
9.3.3. Numerical approach to parameter estimation 234
9.4. A compound multiclass statistical model of the difference image 239
9.4.1. Difference image statistical mixture model 240
9.4.2. Magnitude image statistical mixture model 245
9.4.3.Bayesiandecision 248
9.4.4. Numerical approach to parameter estimation 249
9.5.Experimentalresults 253
9.5.1.Datasetdescription 253
9.5.2.Experimentalsetup 256
9.5.3. Test 1: Two-class Rayleigh–Rice mixture model 256
9.5.4. Test 2: Multiclass Rician mixture model 260
9.6.Conclusion 266
9.7.References 267
List of Authors 275
Index 277
Summary of Volume 2 281