Get Free Shipping on orders over $79
Decentralized Estimation and Control for Multisensor Systems - Arthur G.O. Mutambara

Decentralized Estimation and Control for Multisensor Systems

By: Arthur G.O. Mutambara

eText | 20 May 2019 | Edition Number 1

At a Glance

eText


$112.19

or 4 interest-free payments of $28.05 with

 or 

Instant online reading in your Booktopia eTextbook Library *

Why choose an eTextbook?

Instant Access *

Purchase and read your book immediately

Read Aloud

Listen and follow along as Bookshelf reads to you

Study Tools

Built-in study tools like highlights and more

* eTextbooks are not downloadable to your eReader or an app and can be accessed via web browsers only. You must be connected to the internet and have no technical issues with your device or browser that could prevent the eTextbook from operating.

Decentralized Estimation and Control for Multisensor Systems explores the problem of developing scalable, decentralized estimation and control algorithms for linear and nonlinear multisensor systems. Such algorithms have extensive applications in modular robotics and complex or large scale systems, including the Mars Rover, the Mir station, and Space Shuttle Columbia.

Most existing algorithms use some form of hierarchical or centralized structure for data gathering and processing. In contrast, in a fully decentralized system, all information is processed locally. A decentralized data fusion system includes a network of sensor nodes - each with its own processing facility, which together do not require any central processing or central communication facility. Only node-to-node communication and local system knowledge are permitted.

Algorithms for decentralized data fusion systems based on the linear information filter have been developed, obtaining decentrally the same results as those in a conventional centralized data fusion system. However, these algorithms are limited, indicating that existing decentralized data fusion algorithms have limited scalability and are wasteful of communications and computation resources.

Decentralized Estimation and Control for
Multisensor Systems aims to remove current limitations in decentralized data fusion algorithms and to extend the decentralized principle to problems involving local control and actuation.
The text discusses:

Generalizing the linear Information filter to the problem of estimation for nonlinear systems

Developing a decentralized form of the algorithm

Solving the problem of fully connected topologies by using generalized model distribution where the nodal system involves only locally relevant states

Reducing computational requirements by using smaller local model sizes

Defining internodal communication

Developing estima

on
Desktop
Tablet
Mobile

More in Electrical Engineering