Entropy Generation Minimization : The Method of Thermodynamic Optimization of Finite-Size Systems and Finite-Time Processes - Adrian Bejan
eTextbook alternate format product

Instant online reading.
Don't wait for delivery!

Entropy Generation Minimization

The Method of Thermodynamic Optimization of Finite-Size Systems and Finite-Time Processes

By: Adrian Bejan

Hardcover | 20 October 1995 | Edition Number 1

At a Glance

Hardcover


RRP $525.00

$436.50

17%OFF

or 4 interest-free payments of $109.13 with

 or 

Aims to ship in 7 to 10 business days

When will this arrive by?
Enter delivery postcode to estimate

This book presents the diverse and rapidly expanding field of Entropy Generation Minimization (EGM), the method of thermodynamic optimization of real devices. The underlying principles of the EGM method - also referred to as "thermodynamic optimization," "thermodynamic design," and "finite time thermodynamics" - are thoroughly discussed, and the method's applications to real devices are clearly illustrated.
The EGM field has experienced tremendous growth during the 1980s and 1990s. This book places EGM's growth in perspective by reviewing both sides of the field - engineering and physics. Special emphasis is given to chronology and to the relationship between the more recent work and the pioneering work that outlined the method and the field.
Entropy Generation Minimization combines the fundamental principles of thermodynamics, heat transfer, and fluid mechanics. EGM applies these principles to the modeling and optimization of real systems and processes that are characterized by finite size and finite time constraints, and are limited by heat and mass transfer and fluid flow irreversibilities.
Entropy Generation Minimization provides a straightforward presentation of the principles of the EGM method, and features examples that elucidate concepts and identify recent EGM advances in engineering and physics. Modern advances include the optimization of storage by melting and solidification; heat exchanger design; power from hot-dry-rock deposits; the on & off operation of defrosting refrigerators and power plants with fouled heat exchangers; the production of ice and other solids; the maximization of power output in simple power plant models with heat transfer irreversibilities; the minimization of refrigerator power input in simple models; and the optimal collection and use of solar energy.

More in Engineering Thermodynamics

Applied Thermodynamics for Engineering Technologists : 5th edition - A. Mcconkey
Heat Transfer : An Engineering Course - Eli W. Zavaleta-Aguilar
Engineering Thermodynamics : An Introduction - M. Kassim

RRP $148.42

$113.25

24%
OFF
Modeling and Simulation in Thermal and Fluids Engineering - Krishnan Murugesan
Convective Heat Transfer - Louis C. Burmeister

RRP $450.95

$437.35

Cooling Techniques for Electronic Equipment - Dave S. Steinberg