Get Free Shipping on orders over $79
Entropy Randomization in Machine Learning : Chapman & Hall/CRC Machine Learning & Pattern Recognition - Yuri S. Popkov

Entropy Randomization in Machine Learning

By: Yuri S. Popkov, Alexey Yu. Popkov, Yuri A. Dubnov

eText | 9 August 2022 | Edition Number 1

At a Glance

eText


$92.39

or 4 interest-free payments of $23.10 with

 or 

Instant online reading in your Booktopia eTextbook Library *

Why choose an eTextbook?

Instant Access *

Purchase and read your book immediately

Read Aloud

Listen and follow along as Bookshelf reads to you

Study Tools

Built-in study tools like highlights and more

* eTextbooks are not downloadable to your eReader or an app and can be accessed via web browsers only. You must be connected to the internet and have no technical issues with your device or browser that could prevent the eTextbook from operating.

Entropy Randomization in Machine Learning presents a new approach to machine learning—entropy randomization—to obtain optimal solutions under uncertainty (uncertain data and models of the objects under study). Randomized machine-learning procedures involve models with random parameters and maximum entropy estimates of the probability density functions of the model parameters under balance conditions with measured data. Optimality conditions are derived in the form of nonlinear equations with integral components. A new numerical random search method is developed for solving these equations in a probabilistic sense. Along with the theoretical foundations of randomized machine learning, Entropy Randomization in Machine Learning considers several applications to binary classification, modelling the dynamics of the Earth's population, predicting seasonal electric load fluctuations of power supply systems, and forecasting the thermokarst lakes area in Western Siberia.

Features

• A systematic presentation of the randomized machine-learning problem: from data processing, through structuring randomized models and algorithmic procedure, to the solution of applications-relevant problems in different fields

• Provides new numerical methods for random global optimization and computation of multidimensional integrals

• A universal algorithm for randomized machine learning

This book will appeal to undergraduates and postgraduates specializing in artificial intelligence and machine learning, researchers and engineers involved in the development of applied machine learning systems, and researchers of forecasting problems in various fields.

on
Desktop
Tablet
Mobile

Other Editions and Formats

Paperback

Published: 8th October 2024

More in Neural Networks & Fuzzy Systems