Introduction to Maple | p. 1 |
Basics | p. 1 |
Entering Commands | p. 1 |
Fundamental Data Types | p. 3 |
Mathematical Functions | p. 3 |
Names | p. 4 |
Basic Types of Maple Objects | p. 5 |
Sequences | p. 5 |
Lists | p. 6 |
Sets | p. 6 |
Arrays | p. 7 |
Tables | p. 7 |
Strings | p. 8 |
Evaluation Rules | p. 8 |
Levels of Evaluation | p. 8 |
Last-Name Evaluation | p. 9 |
One-Level Evaluation | p. 9 |
Special Evaluation Rules | p. 10 |
Delayed Evaluation | p. 10 |
Algebraic Equations | p. 11 |
Differentiation and Integration | p. 12 |
Solving Differential Equations | p. 14 |
Expression Manipulation | p. 15 |
Basic Programming Constructs | p. 16 |
Functions, Procedures and Modules | p. 16 |
Maple's Organization | p. 19 |
Linear Algebra Computations | p. 20 |
Graphics | p. 31 |
Plotter: Package for Finite Element Graphics | p. 34 |
Example | p. 39 |
Example | p. 41 |
Example | p. 42 |
Computational Mechanics | p. 45 |
Introduction | p. 45 |
Mathematical Modelling of Physical Systems | p. 45 |
Continuous Models | p. 47 |
Equilibrium | p. 47 |
Propagation | p. 49 |
Diffusion | p. 51 |
Mathematical Analysis | p. 52 |
Approximation Methods | p. 52 |
Discrete Models | p. 55 |
Structural Models | p. 56 |
Approximation Methods | p. 59 |
Introduction | p. 59 |
Residuals | p. 60 |
Weighted-Residual Equation | p. 61 |
Example | p. 61 |
Approximation Functions | p. 62 |
Admissibility Conditions | p. 62 |
Example | p. 63 |
Global Indirect Discretization | p. 64 |
Satisfaction of Boundary Conditions | p. 65 |
Domain Methods of Approximation | p. 66 |
Galerkin Method | p. 66 |
Least Squares Method | p. 67 |
Moments Method | p. 67 |
Collocation Method | p. 68 |
Example | p. 70 |
Example | p. 82 |
Integration by Parts | p. 84 |
Strong, Weak and Transposed Forms | p. 84 |
One-Dimensional Case | p. 85 |
Example | p. 85 |
Higher-Dimensional Cases | p. 86 |
Example | p. 88 |
Local Direct Discretization | p. 88 |
Nodes and Local Regions | p. 89 |
Satisfaction of Boundary Conditions | p. 89 |
Finite Difference Method | p. 90 |
Finite Element Method | p. 93 |
Boundary Element Method | p. 96 |
Example | p. 98 |
Example | p. 113 |
Example | p. 132 |
Interpolation | p. 135 |
Introduction | p. 135 |
Globally Defined Functions | p. 136 |
Polynomial Bases | p. 136 |
Example | p. 137 |
Example | p. 138 |
Conclusions | p. 142 |
Piecewisely Defined Functions | p. 143 |
Spline Interpolation | p. 143 |
Finite Element Interpolation | p. 144 |
Finite Element Generalized Coordinates | p. 145 |
Convergence Conditions | p. 145 |
Geometric Isotropy | p. 146 |
Finite Element Families | p. 146 |
Finite Element Shape Functions | p. 148 |
Natural Coordinates | p. 150 |
Curvilinear Coordinates | p. 156 |
Example | p. 157 |
Parametric Finite Elements | p. 161 |
Isoparametric Finite Elements | p. 162 |
Convergence Conditions | p. 162 |
Evaluation of Element Equations | p. 164 |
Numerical Integration | p. 166 |
Linear Triangular Isoparametric Element | p. 168 |
Example | p. 169 |
Example | p. 171 |
Example | p. 174 |
Example | p. 176 |
The Finite Element Method | p. 179 |
Introduction | p. 179 |
Steady-State Models with Scalar Variable | p. 179 |
Continuous Model | p. 180 |
Weighted Residual Galerkin Approximation | p. 183 |
Discrete Model | p. 185 |
Finite Element Mesh | p. 186 |
Linear Triangular Isoparametric Element | p. 187 |
Total Potential Energy | p. 188 |
Internal Potential Energy Density | p. 188 |
Mesh Topology | p. 189 |
Local Finite Element Equations | p. 190 |
Global Finite Element Equations | p. 192 |
Exact Boundary Conditions | p. 193 |
Solution of the System of Equations | p. 194 |
Computation of Derivatives | p. 194 |
Finite Element Pre- and Post- Processing | p. 196 |
Cgt_fem: Package for Finite Element Analysis | p. 197 |
Data Preparation | p. 197 |
Example | p. 198 |
Example | p. 208 |
Example | p. 213 |
Example | p. 217 |
Fluid Mechanics Applications | p. 223 |
Introduction | p. 223 |
Continuous Models of Fluid Flow | p. 223 |
Incompressible Fluids | p. 223 |
Inviscid Fluids | p. 224 |
Irrotational Flows | p. 224 |
Steady-State Flows | p. 224 |
Bernoulli's Energy Conservation | p. 225 |
Velocity Potential | p. 226 |
Stream Function | p. 226 |
Confined Flows | p. 227 |
Unconfined Flows | p. 228 |
Groundwater Flows | p. 229 |
Darcy's Hypothesis | p. 229 |
Dupuit's Hypothesis | p. 231 |
Example | p. 232 |
Flow Under a Dam | p. 232 |
Problem's Solution | p. 233 |
Example | p. 240 |
Flow in an Unconfined Aquifer | p. 240 |
Problem's Solution | p. 241 |
Solid Mechanics Applications | p. 251 |
Introduction | p. 251 |
Continuous Models | p. 251 |
Fundamental Continuous Model: Elasticity Theory | p. 252 |
Strain-Displacement Equations | p. 253 |
Equilibrium Equations | p. 253 |
Stress-Strain Equations | p. 254 |
Boundary Conditions | p. 254 |
Elastic Fields | p. 255 |
The Work Theorem | p. 256 |
Theorem of Virtual Displacements | p. 256 |
Theorem of Total Potential Energy | p. 256 |
Finite Element Model | p. 257 |
Weighted Residual Equation | p. 257 |
Theorem of Work | p. 258 |
Theorem of Virtual Displacements | p. 259 |
Discretization | p. 259 |
Mesh Topology | p. 261 |
Total Strain Energy | p. 261 |
Distribution of the Strain Energy Density | p. 262 |
Constrained Displacements | p. 262 |
Application of the Finite Element Model | p. 264 |
Three-Dimensional Equilibrium States | p. 265 |
Constant-Strain Tetrahedron Element | p. 265 |
Two-Dimensional Equilibrium States | p. 267 |
Plane Stress and Plane Strain | p. 267 |
Asymptotic Model: Plane Elasticity | p. 269 |
Constant-Strain Triangular Isoparametric Element | p. 270 |
Cst_fem: Package for Finite Element Analysis | p. 273 |
Data Preparation | p. 274 |
Example | p. 275 |
Example | p. 281 |
Example | p. 284 |
Example | p. 292 |
One-Dimensional Equilibrium States | p. 302 |
Asymptotic Model: Theory of Bars | p. 303 |
Truss Element | p. 312 |
Skew Elements | p. 314 |
Beam Element | p. 315 |
Further Study | p. 318 |
The Companion CD-ROM | p. 319 |
References | p. 321 |
Index | p. 323 |
Table of Contents provided by Syndetics. All Rights Reserved. |