Get Free Shipping on orders over $79
Fixed Interval Smoothing for State Space Models - Howard L. Weinert

Fixed Interval Smoothing for State Space Models

By: Howard L. Weinert

eText | 6 December 2012

At a Glance

eText


$159.01

or 4 interest-free payments of $39.75 with

 or 

Instant online reading in your Booktopia eTextbook Library *

Why choose an eTextbook?

Instant Access *

Purchase and read your book immediately

Read Aloud

Listen and follow along as Bookshelf reads to you

Study Tools

Built-in study tools like highlights and more

* eTextbooks are not downloadable to your eReader or an app and can be accessed via web browsers only. You must be connected to the internet and have no technical issues with your device or browser that could prevent the eTextbook from operating.
Fixed-interval smoothing is a method of extracting useful information from inaccurate data. It has been applied to problems in engineering, the physical sciences, and the social sciences, in areas such as control, communications, signal processing, acoustics, geophysics, oceanography, statistics, econometrics, and structural analysis. This monograph addresses problems for which a linear stochastic state space model is available, in which case the objective is to compute the linear least-squares estimate of the state vector in a fixed interval, using observations previously collected in that interval. The author uses a geometric approach based on the method of complementary models. Using the simplest possible notation, he presents straightforward derivations of the four types of fixed-interval smoothing algorithms, and compares the algorithms in terms of efficiency and applicability. Results show that the best algorithm has received the least attention in the literature. Fixed Interval Smoothing for State Space Models: includes new material on interpolation, fast square root implementations, and boundary value models; is the first book devoted to smoothing; contains an annotated bibliography of smoothing literature; uses simple notation and clear derivations; compares algorithms from a computational perspective; identifies a best algorithm. Fixed Interval Smoothing for State Space Models will be the primary source for those wanting to understand and apply fixed-interval smoothing: academics, researchers, and graduate students in control, communications, signal processing, statistics and econometrics.
on
Desktop
Tablet
Mobile

More in Electrical Engineering