Get Free Shipping on orders over $79
Foundations of Deterministic and Stochastic Control - Jon H. Davis

Foundations of Deterministic and Stochastic Control

By: Jon H. Davis

eText | 6 December 2012

At a Glance

eText


$84.99

or 4 interest-free payments of $21.25 with

 or 

Instant online reading in your Booktopia eTextbook Library *

Why choose an eTextbook?

Instant Access *

Purchase and read your book immediately

Read Aloud

Listen and follow along as Bookshelf reads to you

Study Tools

Built-in study tools like highlights and more

* eTextbooks are not downloadable to your eReader or an app and can be accessed via web browsers only. You must be connected to the internet and have no technical issues with your device or browser that could prevent the eTextbook from operating.
Control theory has applications to a number of areas in engineering and communication theory. This introductory text on the subject is fairly self-contained and aimed primarily at advanced mathematics and engineering students in various disciplines. The topics covered include realization problems, linear-quadratic optimal control, stability theory, stochastic modeling and recursive estimation algorithms in communications and control, and distributed system modeling. These topics have a wide range of applicability, and provide background for further study in the control and communications areas. In the early chapters the basics of linear control systems as well as the fundamentals of stochastic control are presented in a unique way so that the methods generalize to a useful class of distributed parameter and nonlinear system models. The control of distributed parameter systems (systems governed by PDEs) is based on the framework of linear quadratic Gaussian optimization problems. The approach here utilizes methods based on Wiener-Hopf integral equations. Additionally, the important notion of state space modeling of distributed systems is examined. Basic results due to Gohberg and Krein on convolution are given and many results are illustrated with some examples that carry throughout the text. The standard linear regulator problem is studied in both the continuous and discrete time cases, followed by a discussion of the (dual) filtering problems. Later chapters treat the stationary regulator and filtering problems with a Wiener-Hopf approach. This leads to spectral factorization problems and useful iterative algorithms that follow naturally from the methods employed. The interplay between time and frequency domain approaches is emphasized.
on
Desktop
Tablet
Mobile

More in Probability & Statistics

Mathematics in Biology - Markus Meister

eBOOK

RRP $194.25

$155.99

20%
OFF
R for Non-Programmers - Daniel Dauber

eBOOK

Statistics by Simulation : A Synthetic Data Approach - Carsten F. Dormann

eBOOK

untitled - TBC ANZ

eBOOK

$31.99