Get Free Shipping on orders over $79
Hadoop Application Architectures : Designing Real-World Big Data Applications - Mark Grover

Hadoop Application Architectures

Designing Real-World Big Data Applications

By: Mark Grover, Ted Malaska, Jonathan Seidman, Gwen Shapira

eText | 30 June 2015 | Edition Number 1

At a Glance

eText


$53.89

or 4 interest-free payments of $13.47 with

 or 

Instant online reading in your Booktopia eTextbook Library *

Why choose an eTextbook?

Instant Access *

Purchase and read your book immediately

Read Aloud

Listen and follow along as Bookshelf reads to you

Study Tools

Built-in study tools like highlights and more

* eTextbooks are not downloadable to your eReader or an app and can be accessed via web browsers only. You must be connected to the internet and have no technical issues with your device or browser that could prevent the eTextbook from operating.

Get expert guidance on architecting end-to-end data management solutions with Apache Hadoop. While many sources explain how to use various components in the Hadoop ecosystem, this practical book takes you through architectural considerations necessary to tie those components together into a complete tailored application, based on your particular use case.

To reinforce those lessons, the book's second section provides detailed examples of architectures used in some of the most commonly found Hadoop applications. Whether you're designing a new Hadoop application, or planning to integrate Hadoop into your existing data infrastructure, Hadoop Application Architectures will skillfully guide you through the process.

This book covers:

  • Factors to consider when using Hadoop to store and model data
  • Best practices for moving data in and out of the system
  • Data processing frameworks, including MapReduce, Spark, and Hive
  • Common Hadoop processing patterns, such as removing duplicate records and using windowing analytics
  • Giraph, GraphX, and other tools for large graph processing on Hadoop
  • Using workflow orchestration and scheduling tools such as Apache Oozie
  • Near-real-time stream processing with Apache Storm, Apache Spark Streaming, and Apache Flume
  • Architecture examples for clickstream analysis, fraud detection, and data warehousing
on
Desktop
Tablet
Mobile

More in Computer Programming & Software Development

The End of Leadership - Barbara Kellerman

eBOOK

Spring AI in Action - Craig Walls

eBOOK