Image Algebra | p. 1 |
Introduction | p. 1 |
Point Sets | p. 4 |
Value Sets | p. 10 |
Images | p. 13 |
Templates | p. 23 |
Recursive Templates | p. 33 |
Neighborhoods | p. 37 |
The p-Product | p. 42 |
Exercises | p. 47 |
References | p. 50 |
Image Enhancement Techniques | p. 55 |
Introduction | p. 55 |
Averaging of Multiple Images | p. 55 |
Local Averaging | p. 57 |
Variable Local Averaging | p. 57 |
Iterative Conditional Local Averaging | p. 58 |
Gaussian Smoothing | p. 59 |
Max-Min Sharpening Transform | p. 60 |
Smoothing Binary Images by Association | p. 62 |
Median Filter | p. 65 |
Unsharp Masking | p. 68 |
Local Area Contrast Enhancement | p. 70 |
Histogram Equalization | p. 71 |
Histogram Modification | p. 72 |
Lowpass Filtering | p. 73 |
Highpass Filtering | p. 81 |
Exercises | p. 82 |
References | p. 84 |
Edge Detection and Boundary Finding Techniques | p. 85 |
Introduction | p. 85 |
Binary Image Boundaries | p. 85 |
Edge Enhancement by Discrete Differencing | p. 87 |
Roberts Edge Detector | p. 90 |
Prewitt Edge Detector | p. 91 |
Sobel Edge Detector | p. 93 |
Wallis Logarithmic Edge Detection | p. 94 |
Frei-Chen Edge and Line Detection | p. 96 |
Kirsch Edge Detector | p. 99 |
Directional Edge Detection | p. 101 |
Product of the Difference of Averages | p. 103 |
Canny Edge Detection | p. 105 |
Crack Edge Detection | p. 109 |
Marr-Hildreth Edge Detection | p. 111 |
Local Edge Detection in Three-Dimensional Images | p. 114 |
Hierarchical Edge Detection | p. 116 |
Edge Detection Using K-Forms | p. 118 |
Hueckel Edge Operator | p. 122 |
Divide-and-Conquer Boundary Detection | p. 128 |
Edge Following as Dynamic Programming | p. 131 |
Exercises | p. 134 |
References | p. 135 |
Thresholding Techniques | p. 137 |
Introduction | p. 137 |
Global Thresholding | p. 137 |
Semithresholding | p. 138 |
Multilevel Thresholding | p. 140 |
Variable Thresholding | p. 141 |
Threshold Selection Using Mean and Standard Deviation | p. 141 |
Threshold Selection by Maximizing Between-Class Variance | p. 143 |
Threshold Selection Using a Simple Image Statistic | p. 149 |
Exercises | p. 153 |
References | p. 153 |
Thinning and Skeletonizing | p. 155 |
Introduction | p. 155 |
Pavlidis Thinning Algorithm | p. 155 |
Medial Axis Transform (MAT) | p. 157 |
Distance Transforms | p. 159 |
Zhang-Suen Skeletonizing | p. 163 |
Zhang-Suen Transform--Modified to Preserve Homotopy | p. 166 |
Thinning Edge Magnitude Images | p. 168 |
Exercises | p. 171 |
References | p. 171 |
Connected Component Algorithms | p. 173 |
Introduction | p. 173 |
Component Labeling for Binary Images | p. 173 |
Labeling Components with Sequential Labels | p. 176 |
Counting Connected Components by Shrinking | p. 178 |
Pruning of Connected Components | p. 181 |
Hole Filling | p. 182 |
Exercises | p. 183 |
References | p. 185 |
Morphological Transforms and Techniques | p. 187 |
Introduction | p. 187 |
Basic Morphological Operations: Boolean Dilations and Erosions | p. 187 |
Opening and Closing | p. 192 |
Salt and Pepper Noise Removal | p. 193 |
The Hit-and-Miss Transform | p. 195 |
Gray Value Dilations, Erosions, Openings, and Closings | p. 197 |
The Rolling Ball Algorithm | p. 199 |
Exercises | p. 201 |
References | p. 202 |
Linear Image Transforms | p. 205 |
Introduction | p. 205 |
Fourier Transform | p. 205 |
Centering the Fourier Transform | p. 208 |
Fast Fourier Transform | p. 211 |
Discrete Cosine Transform | p. 217 |
Walsh Transform | p. 221 |
The Haar Wavelet Transform | p. 225 |
Daubechies Wavelet Transforms | p. 233 |
Exercises | p. 239 |
References | p. 240 |
Pattern Matching and Shape Detection | p. 243 |
Introduction | p. 243 |
Pattern Matching Using Correlation | p. 243 |
Pattern Matching in the Frequency Domain | p. 247 |
Rotation Invariant Pattern Matching | p. 252 |
Rotation and Scale Invariant Pattern Matching | p. 255 |
Line Detection Using the Hough Transform | p. 257 |
Detecting Ellipses Using the Hough Transform | p. 264 |
Generalized Hough Algorithm for Shape Detection | p. 269 |
Exercises | p. 272 |
References | p. 273 |
Image Features and Descriptors | p. 275 |
Introduction | p. 275 |
Area and Perimeter | p. 275 |
Euler Number | p. 276 |
Chain Code Extraction and Correlation | p. 278 |
Region Adjacency | p. 283 |
Inclusion Relation | p. 286 |
Quadtree Extraction | p. 289 |
Position, Orientation, and Symmetry | p. 292 |
Region Description Using Moments | p. 294 |
Histogram | p. 296 |
Cumulative Histogram | p. 298 |
Texture Descriptors: Spatial Gray Level Dependence Statistics | p. 299 |
Exercises | p. 305 |
References | p. 306 |
Geometric Image Transformations | p. 309 |
Introduction | p. 309 |
Image Reflection and Magnification | p. 309 |
Nearest Neighbor Image Rotation | p. 311 |
Image Rotation using Bilinear Interpolation | p. 313 |
Application of Image Rotation to the Computation of Directional Edge Templates | p. 316 |
General Affine Transforms | p. 320 |
Fractal Constructs | p. 322 |
Iterated Function Systems | p. 327 |
Exercises | p. 329 |
References | p. 330 |
Neural Networks and Cellular Automata | p. 333 |
Introduction | p. 333 |
Hopfield Neural Network | p. 334 |
Bidirectional Associative Memory (BAM) | p. 340 |
Hamming Net | p. 345 |
Single-Layer Perceptron (SLP) | p. 349 |
Multilayer Perceptron (MLP) | p. 352 |
Cellular Automata and Life | p. 359 |
Solving Mazes Using Cellular Automata | p. 360 |
Exercises | p. 362 |
References | p. 364 |
The Image Algebra C++ Library | p. 367 |
Index | p. 413 |
Table of Contents provided by Syndetics. All Rights Reserved. |