Get Free Shipping on orders over $79
Hands-On GPU Computing with Python : Explore the capabilities of GPUs for solving high performance computational problems - Avimanyu Bandyopadhyay

Hands-On GPU Computing with Python

Explore the capabilities of GPUs for solving high performance computational problems

By: Avimanyu Bandyopadhyay

eText | 14 May 2019 | Edition Number 1

At a Glance

eText


$51.69

or 4 interest-free payments of $12.92 with

 or 

Instant online reading in your Booktopia eTextbook Library *

Why choose an eTextbook?

Instant Access *

Purchase and read your book immediately

Read Aloud

Listen and follow along as Bookshelf reads to you

Study Tools

Built-in study tools like highlights and more

* eTextbooks are not downloadable to your eReader or an app and can be accessed via web browsers only. You must be connected to the internet and have no technical issues with your device or browser that could prevent the eTextbook from operating.

Explore GPU-enabled programmable environment for machine learning, scientific applications, and gaming using PuCUDA, PyOpenGL, and Anaconda Accelerate

Key Features

  • Understand effective synchronization strategies for faster processing using GPUs
  • Write parallel processing scripts with PyCuda and PyOpenCL
  • Learn to use the CUDA libraries like CuDNN for deep learning on GPUs

Book Description

GPUs are proving to be excellent general purpose-parallel computing solutions for high performance tasks such as deep learning and scientific computing.

This book will be your guide to getting started with GPU computing. It will start with introducing GPU computing and explain the architecture and programming models for GPUs. You will learn, by example, how to perform GPU programming with Python, and you'll look at using integrations such as PyCUDA, PyOpenCL, CuPy and Numba with Anaconda for various tasks such as machine learning and data mining. Going further, you will get to grips with GPU work flows, management, and deployment using modern containerization solutions. Toward the end of the book, you will get familiar with the principles of distributed computing for training machine learning models and enhancing efficiency and performance.

By the end of this book, you will be able to set up a GPU ecosystem for running complex applications and data models that demand great processing capabilities, and be able to efficiently manage memory to compute your application effectively and quickly.

What you will learn

  • Utilize Python libraries and frameworks for GPU acceleration
  • Set up a GPU-enabled programmable machine learning environment on your system with Anaconda
  • Deploy your machine learning system on cloud containers with illustrated examples
  • Explore PyCUDA and PyOpenCL and compare them with platforms such as CUDA, OpenCL and ROCm.
  • Perform data mining tasks with machine learning models on GPUs
  • Extend your knowledge of GPU computing in scientific applications

Who this book is for

Data Scientist, Machine Learning enthusiasts and professionals who wants to get started with GPU computation and perform the complex tasks with low-latency. Intermediate knowledge of Python programming is assumed.

on
Desktop
Tablet
Mobile

More in Illustration & Drawing Software

UX Design Redefined - Ashok Chockalingam

eBOOK

Canva For Dummies - Jesse Stay

eBOOK