Introduction | |
Importance of Heat Transfer in Industrial Combustion | p. 1 |
Energy Consumption | p. 1 |
Research Needs | p. 1 |
Literature Discussion | p. 6 |
Heat Transfer | p. 6 |
Combustion | p. 7 |
Heat Transfer and Combustion | p. 7 |
Combustion System Components | p. 8 |
Burners | p. 8 |
Competing Priorities | p. 9 |
Design Factors | p. 10 |
General Burner Types | p. 13 |
Combustors | p. 18 |
Design Considerations | p. 18 |
General Classifications | p. 19 |
Heat Load | p. 21 |
Process Tubes | p. 21 |
Moving Substrate | p. 21 |
Opaque Materials | p. 22 |
Transparent Materials | p. 22 |
Heat Recovery Devices | p. 23 |
Recuperators | p. 23 |
Regenerators | p. 23 |
References | p. 24 |
Some Fundamentals of Combustion | |
Combustion Chemistry | p. 29 |
Fuel Properties | p. 29 |
Oxidizer Composition | p. 30 |
Mixture Ratio | p. 30 |
Operating Regimes | p. 33 |
Combustion Properties | p. 34 |
Combustion Products | p. 34 |
Oxidizer Composition | p. 34 |
Mixture Ratio | p. 37 |
Air and Fuel Preheat Temperature | p. 38 |
Fuel Composition | p. 40 |
Flame Temperature | p. 40 |
Oxidizer and Fuel Composition | p. 40 |
Mixture Ratio | p. 41 |
Oxidizer and Fuel Preheat Temperature | p. 43 |
Available Heat | p. 43 |
Flue Gas Volume | p. 46 |
Exhaust Product Transport Properties | p. 48 |
Density | p. 49 |
Specific Heat | p. 51 |
Thermal Conductivity | p. 53 |
Viscosity | p. 55 |
Prandtl Number | p. 58 |
Lewis Number | p. 60 |
References | p. 64 |
Heat Transfer Modes | |
Introduction | p. 65 |
Convection | p. 65 |
Forced Convection | p. 66 |
Forced Convection from Flames | p. 66 |
Forced Convection from Outside Combustor Wall | p. 68 |
Forced Convection from Hot Gases to Tubes | p. 68 |
Natural Convection | p. 68 |
Natural Convection from Flames | p. 68 |
Natural Convection from Outside Combustor Wall | p. 69 |
Radiation | p. 69 |
Surface Radiation | p. 72 |
Nonluminous Radiation | p. 82 |
Theory | p. 82 |
Combustion Studies | p. 90 |
Luminous Radiation | p. 102 |
Theory | p. 102 |
Combustion Studies | p. 105 |
Conduction | p. 109 |
Steady-State Conduction | p. 110 |
Transient Conduction | p. 113 |
Phase Change | p. 114 |
Melting | p. 114 |
Boiling | p. 114 |
Internal Boiling | p. 116 |
External Boiling | p. 116 |
Condensation | p. 117 |
References | p. 117 |
Heat Sources and Sinks | |
Heat Sources | p. 123 |
Combustibles | p. 123 |
Fuel Combustion | p. 123 |
Volatile Combustion | p. 123 |
Thermochemical Heat Release | p. 124 |
Equilibrium TCHR | p. 126 |
Catalytic TCHR | p. 127 |
Mixed TCHR | p. 127 |
Heat Sinks | p. 127 |
Load | p. 128 |
Tubes | p. 128 |
Substrate | p. 129 |
Granular Solid | p. 129 |
Molten Liquid | p. 131 |
Surface Conditions | p. 132 |
Wall Losses | p. 140 |
Openings | p. 143 |
Radiation | p. 143 |
Gas Flow Through Openings | p. 143 |
Material Transport | p. 145 |
References | p. 145 |
Computer Modeling | |
Combustion Modeling | p. 149 |
Modeling Approaches | p. 150 |
Fluid Dynamics | p. 151 |
Moment Averaging | p. 151 |
Vortex Methods | p. 152 |
Spectral Methods | p. 152 |
Direct Numerical Simulation | p. 153 |
Geometry | p. 153 |
Zero-Dimensional Modeling | p. 153 |
One-Dimensional Modeling | p. 153 |
Multi-dimensional Modeling | p. 154 |
Reaction Chemistry | p. 154 |
Nonreacting Flows | p. 155 |
Simplified Chemistry | p. 155 |
Complex Chemistry | p. 156 |
Radiation | p. 156 |
Nonradiating | p. 156 |
Participating Media | p. 157 |
Time Dependence | p. 158 |
Steady State | p. 158 |
Transient | p. 158 |
Simplified Models | p. 159 |
Computational Fluid Dynamic Modeling | p. 159 |
Increasing Popularity of CFD | p. 159 |
Potential Problems of CFD | p. 161 |
Equations | p. 162 |
Fluid Dynamics | p. 162 |
Heat Transfer | p. 164 |
Chemistry | p. 169 |
Multiple Phases | p. 170 |
Boundary and Initial Conditions | p. 171 |
Inlets and Outlets | p. 172 |
Surfaces | p. 172 |
Symmetry | p. 172 |
Discretization | p. 173 |
Finite Difference Technique | p. 173 |
Finite Volume Technique | p. 174 |
Finite Element Technique | p. 175 |
Mixed | p. 175 |
None | p. 175 |
Solution Methods | p. 175 |
Model Validation | p. 176 |
Industrial Combustion Examples | p. 177 |
Modeling Burners | p. 177 |
Modeling Combustors | p. 178 |
References | p. 181 |
Experimental Techniques | |
Introduction | p. 195 |
Heat Flux | p. 195 |
Total Heat Flux | p. 195 |
Steady-State Uncooled Solids | p. 196 |
Steady-State Cooled Solids | p. 196 |
Steady-State Cooled Gages | p. 197 |
Transient Uncooled Targets | p. 198 |
Transient Uncooled Gages | p. 198 |
Radiant Heat Flux | p. 200 |
Heat Flux Gage | p. 200 |
Ellipsoidal Radiometer | p. 203 |
Spectral Radiometer | p. 204 |
Other Techniques | p. 204 |
Convective Heat Flux | p. 206 |
Temperature | p. 207 |
Gas Temperature | p. 207 |
Suction Pyrometer | p. 207 |
Optical Techniques | p. 209 |
Fine Wire Thermocouples | p. 209 |
Line Reversal | p. 213 |
Surface Temperature | p. 213 |
Embedded Thermocouple | p. 213 |
Infrared Detectors | p. 214 |
Gas Flow | p. 216 |
Gas Velocity | p. 216 |
Pitot Tubes | p. 216 |
Laser Doppler Velocimetry | p. 218 |
Other Techniques | p. 219 |
Static Pressure Distribution | p. 219 |
Stagnation Velocity Gradient | p. 219 |
Stagnation Zone | p. 220 |
Gas Species | p. 221 |
Other Measurements | p. 221 |
Physical Modeling | p. 223 |
References | p. 223 |
Flame Impingement | |
Introduction | p. 231 |
Experimental Conditions | p. 233 |
Configurations | p. 234 |
Flame Normal to a Cylinder in Crossflow | p. 235 |
Flame Normal to a Hemispherically Nosed Cylinder | p. 236 |
Flame Normal to a Plane Surface | p. 236 |
Flame Parallel to a Plane Surface | p. 238 |
Operating Conditions | p. 238 |
Oxidizers | p. 238 |
Fuels | p. 240 |
Equivalence Ratios | p. 240 |
Firing Rates | p. 243 |
Reynolds Number | p. 243 |
Burners | p. 243 |
Nozzle Diameter | p. 246 |
Location | p. 246 |
Stagnation Targets | p. 246 |
Size | p. 247 |
Target Materials | p. 248 |
Surface Preparation | p. 248 |
Surface Temperatures | p. 250 |
Measurements | p. 250 |
Semianalytical Heat Transfer Solutions | p. 250 |
Equation Parameters | p. 257 |
Thermophysical Properties | p. 258 |
Stagnation Velocity Gradient | p. 261 |
Equations | p. 263 |
Sibulkin Results | p. 263 |
Fay and Riddell Results | p. 263 |
Rosner Results | p. 264 |
Comparisons With Experiments | p. 264 |
Forced Convection (Negligible TCHR) | p. 264 |
Forced Convection with TCHR | p. 266 |
Sample Calculations | p. 268 |
Laminar Flames Without TCHR | p. 268 |
Turbulent Flames Without TCHR | p. 269 |
Laminar Flames with TCHR | p. 270 |
Summary | p. 270 |
Empirical Heat Transfer Correlations | p. 271 |
Thermophysical Properties | p. 272 |
Flames Impinging Normal to a Cylinder | p. 272 |
Local Convection Heat Transfer | p. 273 |
Average Convection Heat Transfer | p. 273 |
Average Convection Heat Transfer with TCHR | p. 274 |
Average Radiation Heat Transfer | p. 274 |
Maximum Convection and Radiation Heat Transfer | p. 275 |
Flames Impining Normal to a Hemi-Nosed Cylinder | p. 275 |
Local Convection Heat Transfer | p. 275 |
Local Convection Heat Transfer with TCHR | p. 276 |
Flames Impinging Normal to a Plane Surface | p. 276 |
Local Convection Heat Transfer | p. 276 |
Local Convection Heat Transfer with TCHR | p. 279 |
Average Convection Heat Transfer | p. 279 |
Flames Parallel to a Plane Surface | p. 280 |
Local Convection Heat Transfer With TCHR | p. 280 |
Local Convection and Radiation Heat Transfer | p. 281 |
References | p. 281 |
Heat Transfer from Burners | |
Introduction | p. 285 |
Open-Flame Burners | p. 285 |
Momentum Effects | p. 285 |
Flame Luminosity | p. 285 |
Firing Rate Effects | p. 287 |
Flame Shape Effects | p. 292 |
Radiant Burners | p. 296 |
Perforated Ceramic or Wire Mesh Radiant Burners | p. 300 |
Flame Impingement Radiant Burners | p. 301 |
Porous Refractory Radiant Burners | p. 302 |
Advanced Ceramic Radiant Burners | p. 307 |
Radiant Wall Burners | p. 311 |
Radiant Tube Burners | p. 311 |
Effects on Heat Transfer | p. 316 |
Fuel Effects | p. 316 |
Solid Fuels | p. 316 |
Liquid Fuels | p. 316 |
Gaseous Fuels | p. 316 |
Fuel Temperature | p. 317 |
Oxidizer Effects | p. 318 |
Oxidizer Composition | p. 318 |
Oxidizer Temperature | p. 318 |
Staging Effects | p. 320 |
Fuel Staging | p. 321 |
Oxidizer Staging | p. 322 |
Burner Orientation | p. 322 |
Hearth-Fired Burners | p. 323 |
Wall-Fired Burners | p. 324 |
Roof-Fired Burners | p. 325 |
Side-Fired Burners | p. 326 |
Heat Recuperation | p. 326 |
Regenerative Burners | p. 327 |
Recuperative Burners | p. 329 |
Furnace or Flue Gas Recirculation | p. 331 |
Pulse Combustion | p. 331 |
In-Flame Treatment | p. 335 |
References | p. 337 |
Heat Transfer in Furnaces | |
Introduction | p. 345 |
Furnaces | p. 346 |
Firing Method | p. 347 |
Direct Firing | p. 347 |
Indirect Firing | p. 347 |
Heat Distribution | p. 349 |
Load Processing Method | p. 351 |
Batch Processing | p. 351 |
Continuous Processing | p. 351 |
Hybrid Processing | p. 352 |
Heat Transfer Medium | p. 352 |
Gaseous Medium | p. 352 |
Vacuum | p. 353 |
Liquid Medium | p. 353 |
Solid Medium | p. 354 |
Geometry | p. 354 |
Rotary Geometry | p. 355 |
Rectangular Geometry | p. 358 |
Ladle Geometry | p. 358 |
Vertical Cylindrical Geometry | p. 360 |
Furnace Types | p. 360 |
Reverberatory Furnace | p. 360 |
Shaft Kiln | p. 362 |
Rotary Furnace | p. 362 |
Heat Recovery | p. 363 |
Recuperators | p. 364 |
Regenerators | p. 364 |
Gas Recirculation | p. 366 |
Flue Gas Recirculation | p. 366 |
Furnace Gas Recirculation | p. 366 |
References | p. 367 |
Lower Temperature Applications | |
Introduction | p. 369 |
Ovens and Dryers | p. 369 |
Predryer | p. 369 |
Dryer | p. 372 |
Fired Heaters | p. 375 |
Reformer | p. 376 |
Process Heater | p. 378 |
Heat Treating | p. 384 |
Standard Atmosphere | p. 387 |
Special Atmosphere | p. 387 |
References | p. 391 |
Higher Temperature Applications | |
Introduction | p. 395 |
Furnaces | p. 395 |
Industries | p. 395 |
Metals Industry | p. 396 |
Ferrous Metal Production | p. 396 |
Electric Arc Furnace | p. 396 |
Smelting | p. 399 |
Ladle Preheating | p. 399 |
Reheating Furnace | p. 402 |
Forging | p. 407 |
Aluminum Metal Production | p. 408 |
Minerals Industry | p. 410 |
Glass | p. 411 |
Types of Traditional Glass-Melting Furnaces | p. 412 |
Unit Melter | p. 412 |
Recuperative Melter | p. 412 |
Regenerative or Siemens Furnace | p. 412 |
Oxygen-Enhanced Combustion for Glass Production | p. 414 |
Advanced Techniques for Glass Production | p. 416 |
Cement and Lime | p. 417 |
Bricks, Refractories, and Ceramics | p. 419 |
Waste Incineration | p. 419 |
Types of Incinerators | p. 422 |
Municipal Waste Incinerators | p. 422 |
Sludge Incinerators | p. 423 |
Mobile Incinerators | p. 424 |
Transportable Incinerators | p. 425 |
Fixed Hazardous Waste Incinerators | p. 425 |
Heat Transfer in Waste Incineration | p. 426 |
References | p. 428 |
Advanced Combustion Systems | |
Introduction | p. 433 |
Oxygen-Enhanced Combustion | p. 433 |
Typical Use Methods | p. 434 |
Air Enrichment | p. 434 |
O[subscript 2] Lancing | p. 435 |
Oxy/Fuel | p. 435 |
Air-Oxy/Fuel | p. 436 |
Operating Regimes | p. 437 |
Heat Transfer Benefits | p. 437 |
Increased Productivity | p. 437 |
Higher Thermal Efficiencies | p. 438 |
Higher Heat Transfer Efficiency | p. 438 |
Increased Flexibility | p. 438 |
Potential Heat Transfer Problems | p. 439 |
Refractory Damage | p. 439 |
Nonuniform Heating | p. 440 |
Industrial Heating Applications | p. 440 |
Metals | p. 440 |
Minerals | p. 440 |
Incineration | p. 441 |
Other | p. 441 |
Submerged Combustion | p. 441 |
Metals Production | p. 441 |
Minerals Production | p. 443 |
Liquid Heating | p. 444 |
Miscellaneous | p. 444 |
Surface Combustor-Heater | p. 445 |
Direct-Fired Cylinder Dryer | p. 445 |
References | p. 446 |
Appendices | |
Reference Sources for Further Information | p. 449 |
Common Conversions | p. 451 |
Methods of Expressing Mixture Ratios for CH[subscript 4], C[subscript 3]H[subscript 8], and H[subscript 2] | p. 453 |
Properties for CH[subscript 4], C[subscript 3]H[subscript 8], and H[subscript 2] Flames | p. 459 |
Fluid Dynamics Equations | p. 497 |
Material Properties | p. 501 |
Author Index | p. 521 |
Subject Index | p. 535 |
Table of Contents provided by Syndetics. All Rights Reserved. |