Get Free Shipping on orders over $79
Kernel Methods for Pattern Analysis - No Information Available
eTextbook alternate format product

Instant online reading.
Don't wait for delivery!

Kernel Methods for Pattern Analysis

By: No Information Available

Hardcover | 24 August 2004

At a Glance

Hardcover


RRP $179.95

$140.75

22%OFF

or 4 interest-free payments of $35.19 with

 or 

Ships in 5 to 7 business days

Kernel methods provide a powerful and unified framework for pattern discovery, motivating algorithms that can act on general types of data (e.g. strings, vectors or text) and look for general types of relations (e.g. rankings, classifications, regressions, clusters). The application areas range from neural networks and pattern recognition to machine learning and data mining. This book, developed from lectures and tutorials, fulfils two major roles: firstly it provides practitioners with a large toolkit of algorithms, kernels and solutions ready to use for standard pattern discovery problems in fields such as bioinformatics, text analysis, image analysis. Secondly it provides an easy introduction for students and researchers to the growing field of kernel-based pattern analysis, demonstrating with examples how to handcraft an algorithm or a kernel for a new specific application, and covering all the necessary conceptual and mathematical tools to do so.
Industry Reviews
'Kernel methods form an important aspect of modern pattern analysis, and this book gives a lively and timely account of such methods. ... if you want to get a good idea of the current research in this field, this book cannot be ignored.' SIAM Review '... the book provides an excellent overview of this growing field. I highly recommend it to those who are interested in pattern analysis and machine learning, and especailly to those who want to apply kernel-based methods to text analysis and bioinformatics problems.' Computing Reviews ' ... I enjoyed reading this book and am happy about is addition to my library as it is a valuable practitioner's reference. I especially liked the presentation of kernel-based pattern analysis algorithms in terse mathematical steps clearly identifying input data, output data, and steps of the process. The accompanying Matlab code or pseudocode is al extremely useful.' IAPR Newsletter

More in Pattern Recognition

Mathematics for Machine Learning - Marc Peter Deisenroth

RRP $79.95

$61.75

23%
OFF
Reinforcement Learning for Finance : A Python-Based Introduction - Yves Hilpisch
Intelligent Robotic Visual Perception with Deep Learning - Liang
Introduction to Online Control - Elad Hazan
Deep Learning for Image Recognition - Peng, MSc  Long

RRP $504.95

$443.75

12%
OFF
LLMs and Generative AI for Healthcare : The Next Frontier - Kerrie Holley
Bandit Convex Optimisation - Tor  Lattimore
Ram-Based Neural Networks : Progress in Neural Processing, 9 - James Austin