Section I-mtbe History, Properties, Occurrence, And Assessment.- 1. Introduction.- History of MTBE Use.- Tert Butyl Alcohol.- Gasoline Releases.- Underground Storage Tank (UST) Leaks and Overfills.- Spills.- Use in Watercraft.- Volatilization.- Summary.- references.- 2. Chemical and Physical Properties.- Boiling Temperature.- Specific Gravity.- Water Solubility.- Vapor Pressure.- Vapor Density.- Adsorption.- Henry's Law Constant.- Summary.- References.- 3. Fate and Transport of MTBE and Other Gasoline Components.- Transport and Fate of Vapors of MTBE in the Unsaturated Zone.- Partitioning of MTBE from Gasoline Directly to Ground Water.- Separation of MTBE from BTEX Along a Flow Path.- Role of Dilution and Dispersion.- Role of Biodegradation of MTBE.- Production and Biodegradation of TBA.- False Attenuation: Missing the Plume with Monitoring Wells.- Missing the Plume: Plume Diving Behavior in Uniform Sand Aquifers.- Two Possible Life Cycles of Plumes.- The Plume Comes to Steady State, Then Recedes Back to the LNAPL.- The Plume Fails to Come to Steady State, and the Hot Spot Moves Downgradient.- Overview of Factors That Lead to Long MTBE Plumes.- Disclaimer.- References.- 4. MTBE Occurrence in Surface and Ground Water.- MTBE and the USGS NAWQA Program.- National MTBE Survey and the Northeastern and Mid-Atlantic States Study.- Northeast States for Coordinated Air Use Management (NESCAUM).- Midwestern States Study.- Individual State Studies.- MTBE Occurence in England and Wales.- Plume Length Studies.- History in California.- Conclusions.- References.- 5. Site Assessment.- Historical Assessment.- Identification of Receptors.- Initial Subsurface Investigation.- Utility Clearance.- Boring Advancement.- Well Development.- Ground Water Sample Collection.- Determination of Ground Water Flow Direction.- Methods of Soil and Ground Water Sample Collection.- Drilling and Soil Sample Collection.- Ground Water Sample Collection.- Soil and Ground Water Analytical Methods.- Geophysics.- Detailed Assessment.- Tracers.- Aquifer Tests.- Evaluation of Soil Gas and Indoor Air Migration Pathways.- Carbon Isotope Analysis.- Identifying Migration Pathways.- References.- 6. Laboratory Analysis of Oxygenated Gasoline Constituents.- Properties of Oxygenated Gasoline Components.- Sample Preservation Methods.- Sample Preparation Methods.- Separation of Volatiles from Aqueous Solution.- Concentration of Separated Volatiles.- Measurement Methods.- Optimum Methods for Analysis of Fuel Oxygenates in Ground Water.- Conclusions.- References.- 7. Risk Assessment.- Evaluating Human Health Risks.- Hazard Identification.- Dose-Response Assessment.- Exposure Assessment.- Risk Characterization.- Evaluating Ecological Risks.- European Risk Assessment of MTBE.- Risk Analysis Framework.- Summary.- References.- Section II-Applicable Remediation Technologies.- 8. Receptor Protection.- and Major Phases.- Receptors.- Receptor Threat.- Receptor Protection.- Technologies.- General.- Vapor Management.- Water Management.- Soil Management.- Conclusions.- References.- 9. Source Control.- Sources.- Tankhold.- Unsaturated Soils.- LNAPL.- Saturated Soils.- Remediation Technologies.- Tankhold.- Unsaturated Soils.- LNAPL.- Saturated Soils.- Conclusions.- References.- 10. Soil Vapor Extraction, Bioventing, and Air Sparging.- Gas-Based Technologies.- Soil Vapor Extraction.- Air Sparging.- Contaminant Considerations.- Volatility.- Biodegradability.- Soil Considerations.- Soil Permeability.- Water Saturation.- NAPL Saturation.- Geologic Considerations.- Fine-Grained Lenses.- Diversion of Airflow.- Heterogeneous Soils.- Airflow Considerations.- Maximizing Biodegradation.- Maximizing Volatilization.- Airflow and Pressure Relationships.- Zone of Influence and Well Spacing.- Modeling and Pilot Testing.- Summary of Extraction System Effectiveness.- Summary of Injection System Effectiveness.- Design Considerations.- Technology Selection.- Off-Gas Treatment.- Enhancements.- Pulsed Injection.- Injecting Gases Other than Air.- Adding Heat (Thermal).- Conclusions.- References.- 11. In Situ Chemical Oxidation.- Hydrogen Peroxide.- Description of Process.- Proven Effectiveness in Field or Laboratory.- Practical Design Considerations.- Ozone.- Description of Process.- Proven Effectiveness in Field or Laboratory.- Practical Design Considerations.- Permanganate.- Description of Process.- Proven Effectiveness in Field or Laboratory.- Practical Design Considerations.- Persulfate.- Description of Process.- Proven Effectiveness in Field or Laboratory.- Practical Design Considerations.- Ultrasound.- Description of Process.- Proven Effectiveness in Field or Laboratory.- Ultrasound with Ozone.- Practical Design Considerations.- ISCO Costs.- Hydrogen Peroxide.- Ozone.- Permanganate.- Persulfate.- Ultrasound.- References.- 12. Aerobic In Situ Bioremediation.- Microbiology and Biochemistry of Aerobic MTBE Biodegradation.- Kinetics of Metabolism.- Biodegradation of MTBE, Petroleum Hydrocarbons, and Consumption of Oxygen.- Prospects for Biodegradation of MTBE in the Field by Native Microorganisms.- Remedial Technology for Ground Water.- Disclaimer.- References.- 13. Anaerobic In Situ Bioremediation.- Anaerobic Processes in Subsurface Sediment.- Anaerobic Bioremediation Strategies.- Anaerobic MTBE Biodegradation with Different Terminal Electron Acceptors.- Nitrate Reduction.- Fe(III) Reduction.- Sulfate Reduction.- Methanogenic Conditions.- Anaerobic TBA Biodegradation.- Implications for MTBE and TBA Bioremediation.- References.- 14. Phytoremediation of MTBE-A Review of the State of the Technology.- Case Studies.- University of Washington.- Kansas State University.- University of Iowa.- University of Colorado.- State of California Water Resources Control Board.- Conclusions and Future Work.- References.- 15. Ground Water Recovery and Treatment.- Perspective of Ground Water Recovery and Treatment.- Relationship to Potable Water.- Ground Water Recovery.- General.- Extraction.- Design.- Design Components.- Well Array Design.- Capture Zone Analysis.- Materials of Construction.- Typical Extraction Well Construction.- Trench Construction.- Optimization.- Reinjection/Infiltration.- Specialized Extraction Systems.- MTBE Specific Issues.- Ground Water Treatment.- Granular Activated Carbon (Liquid Phase).- Interferences.- Iron.- Manganese.- Total Organic Carbon.- Mineralization.- Coagulants and Additives.- Turbidity.- Co-contaminants.- Biological Growth.- Costs.- Resin Adsorption.- Air Stripping.- Stripping Technologies.- Packed Tower Stripper.- Low-Profile Air Stripper.- Diffused Aeration Stripper.- Mechanical Stripper.- Off-Gas Treatment.- Thermal and Catalytic Thermal Oxidation.- Granular Activated Carbon.- Biofilters.- Off-Gas Treatment Costs.- Interferences for Stripping.- Iron.- Manganese.- Mineralization.- Temperature.- MTBE Applications.- Bioreactors.- Activated Sludge.- Fixed-Film Reactors.- Fluidized Bed Bioreactor.- Membrane Separation (Reverse Osmosis).- Advanced Oxidation Processes.- Types of AOPS.- Fenton's Reagent.- Peroxide - Ozone.- Cavitation/Sonication.- UV Driven Systems.- Electron Beams.- Limitations of AOPS.- Advantages of AOPS.- OtherAOPS.- Permanganate.- Costing Pump-and-Treat Systems.- References.- 16. Monitored Natural Attenuation of MTBE.- Background on Monitored Natural Attenuation.- The NRC Strategy for Evaluating Natural Attenuation.- MTBE and the NRC Report.- Recent Findings on MTBE and Natural Attenuation.- Aerobic Biodegradation.- Field Experience.- SAB Report.- Evidence on Anaerobic Biodegradation of MTBE.- Updating the NRC guidance for Natural Attenuation of MTBE.- Scientific Understanding.- Likelihood of Success.- Footprints.- Conclusions.- References.- Section III-Remediation Case Studies.- 17. Remedial Costs for MTBE in Soil and Ground Water.- Cost of Cleanup.- Cost Comparisons for MTBE and BTEX Remediations.- South Carolina Cost Data.- Remedial Technologies Used at USTS in New York State.- Efficiency of Remedial Technologies.- Summary.- Disclaimer.- Acknowledgment.- References.- 18. Remediation Experiences in Finland.- Background.- Legislation for Soil and Ground Water Protection in Finland.- Geology.- Aquifers and Water Service in Finland.- Gasoline Usage.- Fuel Handling at Retail Stations - Technology and Practices.- Practices in Soil and Ground Water Investigation and Risk Assessment at NESTE Sites.- Practices in Soil and Ground Water Remediation at NESTE Sites.- Cost of Remediation of Retail Sites in Finland.- Case Studies.- Case 1 - Traditional Practices, High Hopes, and Not Enough Information.- Case 2 - Traditional Approach and Methods Applied Successfully to Remediate a Service Station Site and Natural Spring.- Case 3 - Emergency Remediation Operation.- Forensic Findings - The Reasons for the Releases.- Lessons Learned.- 19. USEPA Case Studies Database for MTBE Remediation.- Purpose of Database.- Site Selection.- Site Characteristics.- Technology Variety.- Co-Contaminant Variety.- Trends.- Summary.- References.- 20. Remediation of Realeases Containing MTBE at Gasoline Station Sites-ENSR International's Experience.- Why MTBE Makes a Difference and How Do We Exploit Its Properties for Remediation.- Remediation Technologies.- Recovery of MTBE in Soil.- Recovery of MTBE in Ground Water.- Treatment of MTBE.- Driving Forces to Site Remediation.- Technology Sequencing.- ENSR's Experience Remediating MTBE.- Site-Specific Conditions.- Remediation Selection Factors.- Remediation Costs.- Future Trends in Remediation.- Compliance, Early Detection, and Quick Response.- Conclusions.- 21. Source Control and Point of Entry Treatment at a Massachusetts Site.- Site Description.- Release History.- Site Hydrogeology.- Surficial Geology.- Bedrock Geology.- Hydrogeological Parameters.- Nature and Extent of Contamination.- Soil.- Ground Water.- Fate and Transport.- Receptors.- Ecological.- Human.- Exposure Potential.- Ecological.- Human.- Required Cleanup Levels and Timeframes.- Soil.- Ground Water.- Cleanup Timeframe.- Remedial Actions.- Source Removal.- Point of Entry Treatment.- Costs.- Timeline.- References.- 22. Physical Treatment at a New Hampshire Site.- Site Description.- Release History.- Site Hydrogeology.- Surficial Geology.- Bedrock Geology.- Hydrogeological Parameters.- Nature and Extent of Contamination.- Soil.- Ground Water.- Fate and Transport.- Receptors.- Required Cleanup Levels and Timeframes.- Ground Water.- Soil.- Indoor Air.- Cleanup Timeframe.- Remedial Actions.- Immediate Response Actions.- Source Removal.- Physical Treatment.- SVE System.- Ground Water Recovery.- Air Sparging System.- Monitoring and Enhanced Bioremediation.- Costs.- Timeline.- References.- 23. Physical Treatment at a Massachusetts Site.- Site Description.- Release History.- Site Hydrogeology.- Surficial Geology.- Bedrock Geology.- Hydogeological Parameters.- Nature and Extent of Contamination.- Soil.- Ground Water.- Fate and Transport.- Receptors.- Ecological.- Human.- Exposure Potential.- Ecological.- Human.- Required Cleanup Levels and Timeframes.- Soil.- Ground Water.- Cleanup Timeframe.- Remedial Actions.- Source Removal.- Physical Treatment.- Costs.- Timeline.- References.- 24. Strategic Pumping to Divert an MTBE/BTEX Plume from Municipal Water Supply Wells.- Site Description.- Release History.- Site Hydrogeology.- Surficial Geology.- Bedrock Geology.- Hydrogeological Parameters.- Nature and Extent of Contamination.- Receptors.- Remedial Actions.- Cleanup Levels.- Costs.- Timeline.- References.- 25. Ozone Microbubble Sparging at a California Site.- Treatment Technology Overview - Ozone Oxidation and Microbubble Treatment.- Theory.- Oxidation Chemical Mechanisms.- Oxidant Application and Spread.- Site Description and Release History.- Previous Environmental Work.- Site Conditions.- Expected Oxidant Demand.- Stoichiometric VOC Demand.- Oxidizable Metals Demand.- Soil Demand.- Other Organics.- Total Ozone Demand.- Projected Time to Treat (Duration) Computation - Mass Basis.- Monitoring The VOC Decay.- Field Results.- Site Cost Comparison.- Conclusions and Recommendations.- References.- 26. MTBE Cleanup Technology Evaluations at the Port Hueneme NETTS.- Ground Water Circulation Well Environmental Cleanup Systems.- In Situ Air Sparging System.- Extraction of MTBE by a Hollow Fiber Membrane.- High Energy Electron Injection.- HiPOx Advanced Oxidation for the Remediation of MTBE.- In Situ Bioremediation of MTBE.- Direct Injection of a Bacterial Culture to Biodegrade MTBE-Impacted Ground Water.- Large-Scale Biobarrier Demonstration.- In Situ Remediation of MTBE Impacted Aquifer Using Propane Biostimulation.- Natural Attenuation of MTBE in An Anaerobic Ground Water Plume.- Natural Attenuation of MTBE in Ground Water Under Methanogenic Conditions.- 27. Bioremediation at a New Jersey Site Using Propane-Oxidizing Bacteria.- Methodology.- Site Characterization.- Microcosm Testing.- Field-Scale System Implementation and Operation.- Results.- Microcosm Studies.- Field Evaluation.- In Situ Biotreatment Summary.- Technology Costs.- References.- 28. Application of an In Situ Bioremedy Biobarrier at a Retail Gas Station.- Site Location and Geology/Hydrogeology.- Nature and Extent of Contamination and Potential Receptors.- Remediation.- Biobarrier.- Components of Biobarrier System.- Microbes.- Oxygen.- Monitoring Well System.- Site Application.- Field Pilot/Evaluation Test.- Microcosm Evaluation.- Oxygen Delivery.- MC Delivery.- Performance of the Bioremedy Biobarrier.- System Costs.- Timeline.- References.- 29. Ground Water Recovery and Bioreactor Treatment at a California Site.- Summary.- Site History.- Hydrology.- Remedial Activities.- Soil Excavation.- Overpurging.- Interim Enhanced Vacuum Extraction.- Remedial Design.- Results.- 30. Natural Attenuation of Tert Butyl Alcohol at a Texas Chemical Plant.- Previous Work on TBA Degradation.- Influence of TBA Properties on Natural Attenuation.- Site Description.- Plant II TBA Plume.- Natural Attenuation of TBA in the Plant II Area Plume.- Role of Diffusion in Plant II Area Plume Natural Attenuation.- Use of Carbon Isotopes to Document TBA Biodegradation.- Mechanisms of TBA Biodegradation.- Estimation of Natural Biodegradation Rates.- Conclusions.- Future Work.- References.- 31. Natural Attenuation of Benzene and MTBE at Four Midwestern U.S. Sites.- Trend Analysis Approach.- Geochemical Data.- Site A.- Hydrogeology.- Seasonality.- Trends.- Geochemical Conditions.- Site B.- Site C.- Site D.- Conclusions.- Recommendations.- References.- APPENDICES.- Appendix A-MTBE Occurrence in Surface and Ground Water Edited by James A.M. Thomson.- MTBE and the USGS's NAWQA Program.- The NAWQA Program.- Program Status.- MTBE Data.- Patterns.- Conclusions.- Limitations.- Summary.- MTBE Occurrence in the United States.- National MTBE Survey.- Northeastern and Mid-Atlantic States.- Northeast States for Coordinated Air Use Management (NESCAUM).- Midwestern States Study.- Conclusions of the Midwestern States Study.- Additional State Studies.- Conclusions.- MTBE Occurrence in England and Wales.- Fuel Background.- Water Background.- Study Method.- Risk Assessment.- Conclusions.- Impacts.- Further Work.- Acknowledgement.- Plume Length Studies (Texas, Florida, and California).- Texas.- Florida.- California.- History of MTBE in California.- Comparison among Texas, Florida, and California.- Comparison of Plume Lengths for MTBE and BTEX at 212 South Carolina Sites.- Conclusions.- References.- Acronyms.- Appendix B-Primary Author Contact Information.- Acronyms.