Get Free Shipping on orders over $79
Multidisciplinary Design Optimization Methods for Electrical Machines and Drive Systems : Energy (R0) - Gang Lei

Multidisciplinary Design Optimization Methods for Electrical Machines and Drive Systems

By: Gang Lei, Jianguo Zhu, Youguang Guo

eText | 5 February 2016

At a Glance

eText


$139.00

or 4 interest-free payments of $34.75 with

 or 

Instant online reading in your Booktopia eTextbook Library *

Why choose an eTextbook?

Instant Access *

Purchase and read your book immediately

Read Aloud

Listen and follow along as Bookshelf reads to you

Study Tools

Built-in study tools like highlights and more

* eTextbooks are not downloadable to your eReader or an app and can be accessed via web browsers only. You must be connected to the internet and have no technical issues with your device or browser that could prevent the eTextbook from operating.

This book presents various computationally efficient component- and system-level design optimization methods for advanced electrical machines and drive systems. Readers will discover novel design optimization concepts developed by the authors and other researchers in the last decade, including application-oriented, multi-disciplinary, multi-objective, multi-level, deterministic, and robust design optimization methods. A multi-disciplinary analysis includes various aspects of materials, electromagnetics, thermotics, mechanics, power electronics, applied mathematics, manufacturing technology, and quality control and management. This book will benefit both researchers and engineers in the field of motor and drive design and manufacturing, thus enabling the effective development of the high-quality production of innovative, high-performance drive systems for challenging applications, such as green energy systems and electric vehicles.

on
Desktop
Tablet
Mobile

More in Mechanical Engineering

The Railways of Northern England in the 1960s - Michael Clemens

eBOOK

Construction Management Fundamentals, Third Edition - Kraig Knutson

eBOOK