Preface. Acknowledgements. Contributors. Abbrevations. List of Figures. List of Tables. References. 1 Introduction. 1.1 Organization of the Document. 2 Architecture of Future Access Networks. 2.1 Multiplexing level. 2.2 WDM -- Passive Optical Network. 2.2.1 Wavelength allocation strategies. 2.2.2 Dynamic network reconfiguration using flexible WDM. 2.2.3 Static WDM PONs. 2.2.4 Wavelength routed PON. 2.2.5 Reconfigurable WDM PONs. 2.2.6 Wavelength broadcast-and-select access network. 2.2.7 Wavelength routing access network. 2.3 Geographical, optical and virtual topologies: star, tree, bus, ring and combined. 2.3.1 Tree topology. 2.3.2 Bus topology. 2.3.3 Ring topology. 2.3.4 Tree with redundant trunk. 2.3.5 Arrayed Waveguide Grating based single hop WDM/TDM PON. 2.4 Compatibility with Radio applications UWB, UMTS, WiFi. 2.5 Radio-over-Fibre. 2.6 Next Generation G/E-PON standards development process. 2.6.1 Development of 10G EPON. 2.6.2 Next generation GPON systems. 2.6.3 Summary. 3 Components for Future Access Networks. 3.1 Tuneable Optical Network Unit. 3.2 Fast-tunable laser at the Optical Line Terminal. 3.3 Arrayed Waveguide Gratings. 3.3.1 Wavelength router functionality.3.3.2 Applications in access networks.3.3.3 Arrayed Waveguide Grating characterization.3.4 Reflective receivers and modulators. 3.4.1 Electroabsorption Modulator. 3.4.2 Semiconductor Optical Amplifiers. 3.4.3 Reflective Semiconductor Optical Amplifier. 3.4.4 Erbium Doped Waveguide Amplifiers and integration with RSOA and REAM for high performance colourless ONT. 4 Enhanced Transmission Techniques. 4.1 Advanced functionalities in Ethernet PONs. 4.1.1 Wavelength conversion. 4.1.2 Tolerance to wavelength conversion range. 4.2 Bidirectional single fibre transmission with colourless Optical Network Unit. 4.2.1 Remodulation by using Reflective Semiconductor Optical Amplifiers. 4.2.2 Fabry Perot Injection Locking with high bandwidth and low optical power for locking. 4.2.3 Characterization of Rayleigh Backscattering. 4.2.4 Strategies to mitigate Rayleigh Backscattering. 4.2.5 ASK-ASK configuration using time division multiplexing. 4.2.6 FSK-ASK configuration using modulation format multiplexing. 4.2.7 Subcarrier Multiplexing by electrical frequency multiplexing. 4.2.8 Rayleigh Scattering Reduction by means of Optical Frequency Dithering. 4.3 Spectral slicing. 4.4 Alternative modulation formats to NRZ ASK. 4.5 Bidirectional Very high rate DSL transmission over PON. 4.5.1 Heterodyning systems. 4.5.2 Optical frequency multiplying systems. 4.5.3 Coherent systems. 4.6 Active and remotely-pumped optical amplification. 4.6.1 Burst traffic. 4.6.2 Raman amplification in Ethernet PONs. 4.6.3 Remote powering. 4.7 Variable splitter, variable multiplexer. 5 Network Protection. 5.1 Definitions. 5.2 Protection schemes. 5.2.1 Standard schemes. 5.2.2 Novel schemes. 5.3 Reliability performance evaluation. 5.3.1 Reliability requirements and reliability data. 5.3.2 Reliability models. 5.3.3 Results. 5.3.4 Power supply. 5.4 Conclusions. 6 Traffic Studies. 6.1 Dynamic Bandwith Allocation, QoS and priorization in TDMA PONs. 6.1.1 Implementation of a Dynamic Bandwidth Allocation mechanism. 6.1.2 Definition and state of art. 6.1.3 Migration toward a dynamic bandwidth allocated BPON and selection criteria. 6.2 WDMA/TDMA Medium Access Control. 6.2.1 Access Protocol for Arrayed Waveguide Grating based TDMA/WDMA PONs for Metropolitan Area Networks. 6.2.2 Geographical Bandwidth Allocation. 6.3 Access Protocols for WDM Rings with QoS Support. 6.3.1 Analytical Model. 6.3.2 Numerical Results. 6.3.3 Access Protocol Supporting QoS Differentiated Services. 6.3.4 Performance Study. 6.3.5 Summary. 6.4 Efficient Support for Multicast and Peer-to-peer traffic. 6.4.1 Multicast Traffic.6.4.2 Peer-to-Peer Traffic. 7 Metro-Access Convergence. 7.1 Core-metro-access efficient interfacing. 7.1.1 Optical node implementation.7.1.2 All-optical interfacing Access-Metro Architectures. 7.2 Optical Burst Switching in access. 7.2.1 Medium Access Control protocol and Dynamic Bandwidth Allocation.7.2.2 Optical Burst Switching and traffic aggregation strategies for access networks. 7.2.3 Optical Burst Switching, queue management and priority queuing for QoS. 7.3 Sardana network: an example of metro-access convergence. 7.3.1 Single Fibre Ring Sardana.7.3.2 Double Fibre Ring Sardana. 8 Economic Models. 8.1 WDM/TDM PON. 8.1.1 Bandwidth growth -- the margin challenge. 8.1.2 Economically sustainable bandwidth growth. 8.1.3 The need for a new network architecture. 8.2 Long reach PONs. 8.2.1 Long reach PON -- technical challenges.8.3 Long term dynamic WDM cost comparison. Index.