1 Chemical Shift in 1H-NMR Spectroscopy.- 1.1. Introduction.- 1.2. Relaxation Processes.- 1.2.1. Spin-Lattice Relaxation (T1).- 1.2.2. Spin-Spin Relaxation (T2).- 1.3. Chemical Shift.- 1.3.1. Some Factors Affecting Chemical Shift.- Recommended Reading.- 2 Spin-Spin Coupling 1H-NMR Spectroscopy.- 2.1. Introduction.- 2.2. Chemical and Magnetic Equivalence of Nuclei.- 2.3. Different Spin Systems.- 2.3.1. Two Coupled Nuclei (AX, AB, A2 Systems).- 2.3.2. Three Coupled Nuclei (AX2, AMX, ABX, ABC, AB2 Systems).- 2.3.3. Four Coupled Nuclei (AX3, A2X2, AA?XX?, A2B2, AB3, AA?BB? ABCD Systems).- 2.3.4. Five Interacting Nuclei (A2X3, A2B3, AA?BB?C).- 2.4. Factors Affecting Coupling Constants.- 2.4.1. Dependence on Dihedral Angle.- 2.4.2 Dependence of Coupling Constants on Electronegativity of Substituents.- 2.4.3. Dependence of3J on H-C-C-H Valence Angles.- 2.4.4. Dependence of 3J on C-C Bond Lengths/? Bond Orders.- 2.5. Long-Range Spin-Spin Coupling.- 2.5.1. Long-Range Coupling in Unsaturated Compounds.- 2.5.2. Through-Space Coupling.- 2.5.3. Long-Range Coupling in Saturated Systems.- 2.5.4. Dipole-Dipole Interaction.- Recommended Reading.- 3 Experimental Procedures in NMR Spectroscopy.- 3.1. Pulsed Fourier Transform NMR Spectroscopy.- 3.1.1. Rotating Frame of Reference.- 3.1.2. Free Induction Decay.- 3.1.3. Setting Pulse Widths.- 3.1.4. Adjustment of Pulse Frequency.- 3.1.5. Signal Weighting.- 3.1.6. Phase Correction.- 3.1.7. Double Resonance.- 3.1.8. Off-Resonance Decoupling.- 3.2. Study of Dynamic Effects by NMR Spectroscopy.- 3.2.1. Hindered Internal Rotation.- 3.2.2. Keto-Enol Tautomerism.- 3.2.3. Inversion of Configuration.- 3.2.4. Proton Exchange Equilibria.- 3.2.5. Valence Tautomerism.- Recommended Reading.- 4 Chemical Shifts and Spin-Spin Couplings in 13C-NMR Spectroscopy.- 4.1. Chemical Shifts in 13C-NMR Spectroscopy.- 4.1.1. Factors Affecting Chemical Shifts.- 4.1.2. Additivity of Substituent Effects.- 4.1.3. Chemical Shifts of Organic Molecules.- 4.2. Couplings in 13C-NMR Spectroscopy.- 4.2.1. Carbon-Proton and Carbon-Carbon Coupling.- 4.3. High-Resolution NMR in Solids.- 4.3.1. NMR Imaging.- Recommended Reading.- 5 Special Pulse Sequences and Two-Dimensional NMR Spectroscopy.- 5.1. Spin-Echo and Polarization Transfer.- 5.1.1. Spin-Echo Measurements.- 5.1.2. Attached Proton Test by Gated Spin-Echo (GASPE) (or SEFT) Measurements.- 5.1.3. Cross-Polarization.- 5.2. Carbon-Carbon Connectivity by INADEQUATE Spectra.- 5.2.1. INADEQUATE Spectra.- 5.2.2. DANTE Spectra.- 5.3. Two-Dimensional NMR Spectroscopy.- 5.3.1. 2D J-Resolved Spectroscopy.- 5.3.2. 2D-Shift Correlated Spectroscopy.- 5.4. Chemical Shift Correlations Through Cross-Relaxation and Exchange.- 5.4.1. NOESY Spectra.- 5.4.2. Two-Dimensional Heteronuclear NOE (HOESY).- 5.4.3. Relayed NOESY.- 5.4.4. Simultaneous 2D Correlated (COSY) and 2D Nuclear Overhauser Enhancement (NOESY) Spectroscopy (COCONOSY).- 5.5. Two-Dimensional Heteronuclear Relayed Coherence Transfer (RCT) Spectroscopy.- 5.5.1. Heteronuclear Relayed Proton Correlated Spectroscopy (HERPECS).- 5.6. Double-Quantum Coherence.- 5.6.1. Carbon-Carbon Connectivity Plot (CCCP) by Double-Quantum Coherence.- 5.6.2. Two-Dimensional Double-Quantum Coherence Echo Correlated Spectroscopy (DECSY).- 5.6.3. Relayed Double-Quantum 2D-NMR Spectroscopy.- 5.6.4. X-Relayed 1H-1H Correlated Spectroscopy (X-Relayed 1H-1H COSY).- 5.6.5. Carbon-Relayed 1H-13C Correlated Spectroscopy.- Recommended Reading.- Appendix A Problems.- Appendix B Answers to Problems.