Optimization for Data Analysis - Stephen J. Wright

Optimization for Data Analysis

By: Stephen J. Wright, Benjamin Recht

Hardcover | 5 April 2022

At a Glance

Hardcover


$97.39

or 4 interest-free payments of $24.35 with

 or 

Aims to ship in 7 to 10 business days

Optimization techniques are at the core of data science, including data analysis and machine learning. An understanding of basic optimization techniques and their fundamental properties provides important grounding for students, researchers, and practitioners in these areas. This text covers the fundamentals of optimization algorithms in a compact, self-contained way, focusing on the techniques most relevant to data science. An introductory chapter demonstrates that many standard problems in data science can be formulated as optimization problems. Next, many fundamental methods in optimization are described and analyzed, including: gradient and accelerated gradient methods for unconstrained optimization of smooth (especially convex) functions; the stochastic gradient method, a workhorse algorithm in machine learning; the coordinate descent approach; several key algorithms for constrained optimization problems; algorithms for minimizing nonsmooth functions arising in data science; foundations of the analysis of nonsmooth functions and optimization duality; and the back-propagation approach, relevant to neural networks.
Industry Reviews
'This delightful compact tome gives the reader all the results they should have in their pocket to contribute to optimization and statistical learning. With the clean, elegant derivations of many of the foundational optimization methods underlying modern large-scale data analysis, everyone from students just getting started to researchers knowing this book inside and out will be well-positioned for both using the algorithms and developing new ones for machine learning, optimization, and statistics.' John C. Duchi, Stanford University
'Optimization algorithms play a vital role in the rapidly evolving field of machine learning, as well as in signal processing, statistics and control. Numerical optimization is a vast field, however, and a student wishing to learn the methods required in the world of data science could easily get lost in the literature. This book does a superb job of presenting the most important algorithms, providing both their mathematical foundations and lucid motivations for their development. Written by two of the foremost experts in the field, this book gently guides a reader without prior knowledge of optimization towards the methods and concepts that are central in modern data science applications.' Jorge Nocedal, Northwestern University
'This timely introductory book gives a rigorous view of continuous optimization techniques which are being used in machine learning. It is an excellent resource for those who are interested in understanding the mathematical concepts behind commonly used machine learning techniques.' Shai Shalev-Shwartz, Hebrew University of Jerusalem
'This textbook is a much-needed exposition of optimization techniques, presented with conciseness and precision, with emphasis on topics most relevant for data science and machine learning applications. I imagine that this book will be immensely popular in university courses across the globe, and become a standard reference used by researchers in the area.' Amitabh Basu, Johns Hopkins University

More in Mathematics

How to Win At Chess : The Ultimate Guide for Beginners and Beyond - Levy Rozman
On the Edge : The Art of Risking Everything - Nate Silver

RRP $36.99

$33.25

10%
OFF
The Art of Gathering : How We Meet and Why It Matters - Priya Parker
The Selfish Gene : 40th Anniversary Edition - Richard Dawkins
Essential Mathematics for Economic Analysis : 6th edition - Knut Sydsaeter
Antifragile : Things That Gain from Disorder - Nassim Nicholas Taleb
Fuzzy Methods for Assessment and Decision Making - Michael Gr. Voskoglou

RRP $264.95

$199.95

25%
OFF
Handbook of Pharmacokinetics and Toxicokinetics - Mehdi Boroujerdi
Quantum Chemistry - M. S. Prasada Rao

RRP $96.99

$75.50

22%
OFF
Dual Quaternions and Their Associated Clifford Algebras - Ronald Goldman
General Quantum Variational Calculus - Svetlin G. Georgiev
General Quantum Variational Calculus - Svetlin G. Georgiev
Fundamentals of Stochastic Models - Zhe George Zhang