1 Basin Simulation and the Design of the Conceptual Basin Model.- 1.1 Introduction: Integrated Basin Analysis.- 1.2 The Conceptual Basin Model.- 1.3 Definition and Classification of Basins and Their Thermal Regimes.- 1.3.1 Temperature and Heat Flow History.- 1.4 The Filling of the Sedimentary Basin: Stratigraphy and Lithofacies.- 1.4.1 Chronostratigraphy: Definition of Events.- 1.4.2 Physical Stratigraphy: Definition of Layers.- 1.4.3 Accumulation Rates and Subsidence:The Burial History.- 1.4.4 Paleogeography and Paleotemperature.- 1.5 Postdepositional Processes.- 1.5.1 Compaction and the Evolution of Rock Physical Properties.- 1.5.2 Erosion of Overburden and the Estimation of Maximum Burial.- 1.5.3 Methods of Predicting Diagenesis.- 1.5.4 Structural Deformation History.- 1.5.5 Petroleum Generation and Estimation of Petroleum Yield.- 1.6 Optimization and Calibration: Testing and Evaluation of the Model.- 1.6.1 Temperature Calibration.- 1.6.2 Vitrinite Reflectance Kinetics and Other Organic Calibration Parameters.- 1.6.3 Clay Kinetics as Temperature History Indicator.- 1.6.4 Compaction or Porosity Optimization.- 1.6.5 Sensitivity Analysis.- 1.6.6 The End Result.- 1.7 Conclusion: A Note of Caution and Outlook.- References.- 2 Thermal History of Sedimentary Basins.- 2.1 Introduction.- 2.2. Fundamental Concepts of Heat Transfer.- 2.3 Heat Transfer Equation.- 2.4 Heat Transfer in Sedimentary Basins.- 2.4.1 Heat Transfer in Sedimentary Basins by Conduction.- 2.4.2 Heat Transfer in Sedimentary Basins by Convection.- 2.4.3 Boundary Conditions of Heat Transfer in Sedimentary Basins.- 2.4.4 Other Factors Affecting Thermal History of Sedimentary Basins.- 2.5 Reconstruction of Thermal History in Sedimentary Basins.- 2.5.1 Reconstruction of Thermal History by Computer-Aided Basin Modeling.- 2.5.2 Controls of Thermal History.- 2.5.3 Calibration of Thermal History.- 2.6 Thermal History of Sedimentary Basins: Case Histories.- 2.6.1 Cambay Basin, India.- 2.6.2 San Joaquin Basin, California, USA.- 2.6.3 Adana Basin, Turkey.- 2.6.4 Styrian Basin, Austria.- 2.6.5 Zonguldak Basin, Turkey.- 2.6.6 Northwest German Basin.- 2.7 Concluding Remarks.- References.- 3 Maturation and Petroleum Generation.- 3.1 Introduction.- 3.2 Maturation: Definition and Driving Force.- 3.3 The Phenomenon of Petroleum Generation.- 3.4 Kerogen Maturation.- 3.4.1 Petrography: Vitrinite, Other Macerals, and Microscopic Approaches.- 3.4.2 Maturity-Related Changes of Optical Properties of Macerals.- 3.4.3 Model for Kerogen Maturation: Evolution of Physical Structure.- 3.4.4 Changes in Chemical and Carbon Isotope Composition.- 3.4.5 Pyrolysis Characterization.- 3.5 Bitumen and Petroleum: Geochemical Maturation.- 3.5.1 Maturation Changes in Bulk Properties and Gross Composition.- 3.5.2 Maturation Changes in Molecular Distributions of Hydrocarbons.- 3.5.3 Maturation Changes in Molecular Distributions of Heterocompounds.- 3.5.4 Maturation Changes in Carbon Isotope Composition.- 3.5.5 Thermochemistry, Kinetics, and Mechanisms of Molecular Transformations.- 3.5.6 Relationships Among Various Maturity Indicators.- References.- 4 Kinetics of Petroleum Formation and Cracking.- 4.1 Introduction.- 4.2 Concepts of Chemical Kinetics.- 4.2.1 Rate Laws and Order of Reactions.- 4.2.2 Temperature Dependence of Reaction Rates.- 4.2.3 Fundamentals of Non-isothermal Kinetics.- 4.3 Bulk Petroleum Generation.- 4.3.1 Kinetic Models.- 4.3.2 Model Calibration Against Programmed-Temperature Open-System Pyrolysis.- 4.3.3 Closed Versus Open-System Configurations.- 4.4 Generation of Methane and Molecular Nitrogen from Coals.- 4.5 The Problems of Predicting Petroleum Generation Rates and Compositions in Nature.- 4.6 The Conversion of Oil to Gas in Petroleum Reservoirs.- References.- 5 Deposition of Petroleum Source Rocks.- 5.1 Introduction.- 5.2 Production and Preservation of Organic Matter.- 5.2.1 The Debate.- 5.2.2 Some Observations.- 5.3 Transport of Organic Particles.- 5.4 Deep Marine Silled Basins.- 5.5 Progradational Submarine Fans.- 5.6 Upwelling Areas.- 5.7 Anoxic Continental Shelves.- 5.8 Evaporitic Environments.- 5.9 Lakes.- 5.10 Fluviodeltaic Coal-Bearing Sequences.- 5.11 Source Rocks and Tectonics of Petroleum Basins.- 5.12 Conclusions.- References.- 6 The Bulk Composition of First-Formed Petroleum in Source Rocks.- 6.1 Introduction.- 6.2 The Direct Analysis of First-Formed Petroleum.- 6.3 Kerogen Composition.- 6.3.1 The Typing of Kerogens by Elemental Composition.- 6.3.2 Kerogen Composition and Structure - A Brief Overview.- 6.4 Choice of Pyrolysis.- 6.4.1 The Concept of Structural Moieties.- 6.4.2 Simulating Catagenesis.- 6.5 Pyrolysates and Petroleum.- 6.5.1 Aliphatic Hydrocarbons.- 6.5.2 Aromatic Compounds.- 6.5.3 Sulphur-Containing Compounds.- 6.5.4 "Unresolved" Compounds.- 6.5.5 Model of Kerogen Decomposition.- 6.6 Predicting Petroleum Compositions.- 6.6.1 Qualitative Versus Quantitative Predictions.- 6.6.2 Organofacies Based on Petroleum Composition.- 6.7 Concluding Remarks.- References.- 7 Petroleum Migration: Mechanisms, Pathways, Efficiencies, and Numerical Simulations.- 7.1 Introduction.- 7.2 Migration Mechanisms.- 7.2.1 Primary Migration Mechanisms.- 7.2.2 Secondary Migration Mechanisms.- 7.3 Migration Pathways.- 7.3.1 Potential Migration Pathways.- 7.3.2 Evidence for Migration Pathways.- 7.3.3 Case Studies on Primary Migration.- 7.4 Migration Efficiency.- 7.4.1 Relative and Absolute Source Rock Expulsion Efficiency.- 7.4.2 Efficiency of Secondary Migration.- 7.5 Simulation of Migration Processes: The Geological Framework.- 7.5.1 Prerequisite: Extension of the Conceptual Model for Migration Modelling.- 7.5.2 Conceptual Model: Migration System and Pathways.- 7.5.3 General Numerical Model.- 7.5.4 Specific Items of the Numerical Model.- 7.5.5 Case Histories.- References.- Outlook.