Get Free Shipping on orders over $79
Practical Mathematical Optimization : Basic Optimization Theory and Gradient-Based Algorithms - Jan A Snyman

Practical Mathematical Optimization

Basic Optimization Theory and Gradient-Based Algorithms

By: Jan A Snyman, Daniel N Wilke

eText | 2 May 2018 | Edition Number 2

At a Glance

eText


$129.00

or 4 interest-free payments of $32.25 with

 or 

Instant online reading in your Booktopia eTextbook Library *

Why choose an eTextbook?

Instant Access *

Purchase and read your book immediately

Read Aloud

Listen and follow along as Bookshelf reads to you

Study Tools

Built-in study tools like highlights and more

* eTextbooks are not downloadable to your eReader or an app and can be accessed via web browsers only. You must be connected to the internet and have no technical issues with your device or browser that could prevent the eTextbook from operating.

This textbook presents a wide range of tools for a course in mathematical optimization for upper undergraduate and graduate students in mathematics, engineering, computer science, and other applied sciences. Basic optimization principles are presented with emphasis on gradient-based numerical optimization strategies and algorithms for solving both smooth and noisy discontinuous optimization problems. Attention is also paid to the difficulties of expense of function evaluations and the existence of multiple minima that often unnecessarily inhibit the use of gradient-based methods. This second edition addresses further advancements of gradient-only optimization strategies to handle discontinuities in objective functions. New chapters discuss the construction of surrogate models as well as new gradient-only solution strategies and numerical optimization using Python. A special Python module is electronically available (via springerlink) that makes the new algorithms featured in the text easily accessible and directly applicable. Numerical examples and exercises are included to encourage senior- to graduate-level students to plan, execute, and reflect on numerical investigations. By gaining a deep understanding of the conceptual material presented, students, scientists, and engineers will be able to develop systematic and scientific numerical investigative skills.

on
Desktop
Tablet
Mobile

More in Algorithms & Data Structures

Addiction by Design : Machine Gambling in Las Vegas - Natasha Dow Schüll

eBOOK

Deep Learning Crash Course - Giovanni Volpe

eBOOK

RRP $81.07

$64.99

20%
OFF