I Applied Mathematics and Modelling.- 1. A class of nonautonomous differential equations reducible to autonomous ones by an exact method. Proc. Natl. Acad. Sci., V. 58, no. 2 (1967): 412-419 [31].- 2. Nonlinear differential equations with several general solutions. Proc. Acad. of Athens, V. 52 (1977): 221-229 [50]. Also: Ukr. Math. J., V. 30, no. 2 (1978): 238-241 (see p. 499).- 3. The general solutions of nonlinear differential equations as functions of their arbitary constants. Proc. Acad. of Athens, V. 52 (1977): 524-532 [51].- 4. Actual mathematical solutions of problems posed by reality, (I): a classical procedure. Proc. Acad. of Athens, V. 45 (1970): 179-187 [39].- 5. Actual mathematical solutions of problems posed by reality, (II): applications. Proc. Acad. of Athens, V. 46 (1971): 21-31 [40].- 6. Physical problems discussed mathematically. Bull. Soc. Math. Grece, nouv. ser., t. 611, fasc. I. (1965): 143-156 [25].- 7. Diffraction by a semi-infinite screen with a rounded end (with Joseph B. Keller). Comm. Pure Appl. Math., V. 14, no. 3 (1961): 457-471 [16].- 8. On the linearization of nonlinear models of the phenomena, pt. I: linearization by exact methods. Proc. Acad. of Athens, V. 51 (1976): 659-668 [47].- 9. On the linearization of nonlinear models of the phenomena, pt. II: linearization by approximate methods. Proc. Acad. of Athens V. 51 (1976): 669-683 [48].- 10. Characteristic properties of linear and nonlinear systems. Proc. Acad. of Athens, V. 51 (1976): 907-935 [49].- 11. Mathematical models of physical and social systems. Genl. Electric Co., R.S.D., Philadelphia, 1980 [46b].- II Nonlinear Mechanics.- 1. Subharmonic Oscillations and Principal Modes.- 12. Subharmonics of any order in case of nonlinear restoring force, pt. I. Proc. Athens Acad. Sci., V. 32 (1957): 77-85 [6].- 13. Subharmonics of order one third in the case of cubic restoring force, pt. II. Proc. Athens Acad. Sci., V. 32 (1957): 101-108 [7].- 14. Remarks on a problem of subharmonics. Proc. Athens Acad. Sci., V. 32 (1957): 143-146 [8].- 15. On the singularities of a system of differential equations, where the time figures explicitly. Proc. Athens Acad. Sci., V. 32 (1957): 448-451 [9].- 16. Subharmonics of any order in nonlinear systems of one degree of freedom: application to subharmonics of order 1/3. Inf. and Control, V. 1, no. 3 (1958): 198-227 [10].- 17. On a problem of nonlinear mechanics. Inf. and Control, V. 2, no. 3 (1959): 297-309; Also Proc. Athens Acad. Sci., V. 34 (1959): 238-242 [11].- 18. A method for defining principal modes of nonlinear systems utilizing infinite determinants (I). Proc. Natl. Acad. Sci., U.S., V. 46, no. 12 (1960): 1608-1611 [14].- 19. A method for defining principal modes of nonlinear systems utilizing infinite determinants (II). Proc. Natl. Acad. Sci., U.S., V. 47, no. 6 (1961): 883-887 [15].- 20. Method for defining principal modes of nonlinear systems utilizing infinite determinants. J. Math. Phys., V. 2, no. 6 (1961): 869-875 [17].- 21. On the convergence of series related to principal modes of nonlinear systems. Proc. Acad. of Athens, V. 38 (1963): 33-36 [19].- 2. Celestial and Orbital Mechanics.- 22. The motion of a projectile around the earth under the influence of the earth's gravitational attraction and a thrust. Proc. Athens Acad. Sci., V. 35 (1960): 96-103 [12].- 23. The Keplerian orbit of a projectile around the earth, after the thrust is suddenly removed. Proc. Athens Acad. Sci., V. 35 (1960): 191-202 [13].- 24. On the convergence of the solution of a special two-body problem. Proc. Acad. of Athens, V. 38 (1963): 36-39 [20].- 25. The impulsive force required to effectuate a new orbit through a given point in space. J. Franklin Inst., V. 276, no. 6 (1963): 475-489; Proc. XIVth Intl. Astron. Congress, Paris, 1963 [21].- 26. Motion in a Newtonian forced field modified by a general force, (I). J. Franklin Inst., V. 278, no. 6 (1964): 407-416; Proc. XVth Intl. Astron. Congress, Warsaw, 1964 [22].- 27. Motion in a Newtonian force field modified by a general force (II). J. Franklin Inst., V. 278 (1964): 349-355. XVIth Int. Astron. Congress, Athens, Greece (1965): [23].- 28. Motion in a Newtonian force field modified by a general force, (III). Application: the entry problem (with G. Reehl). XVIIth Intl. Astron. Congress, Madrid (1966): 149-154 [26].- 29. The entry problem (with G. Reehl), Proc. Acad. of Athens, V. 41 (1966): 246-251 [27].- III Dynamical Systems Analysis.- 1. Stability Analysis.- 30. On the stability definitions of dynamical systems. Proc. Natl. Acad. Sci. (U.S.), V. 53, no. 6 (1965): 1288-1294 [24].- 31. Stability concepts of dynamical systems. Inf. and Control, V. 9, no. 5 (1966): 531-548 [28].- 32. Attitude stability of a spherical satellite (with A. J. Dennison). J. Franklin Inst., V. 286, no. 3 (1968): 193-203; Bull. Amer. Phys. Soc., ser. 2, V. 12, no. 3 (1967): p. 288 (Abstract) [33].- 33. Stability concepts of solutions of differential equations with deviating arguments. Proc. Acad. of Athens, V. 46 (1971): 273-278 [42].- 34. Remarks on stability concepts of solutions of dynamical systems. Proc. Acad. of Athens, V. 49 (1974): 408-416 [44].- 35. Stability Concepts of dynamical systems. Philadelphia: Genl. Electric Co., R.S.D., 1980 [54].- 2. Precessional Phenomena.- 36. On a class of precessional phenomena and their stability in the sense of Liapunov, Poincare and Lagrange. Proc. VIIIth Intl. Symp. on Space, Tech. Sci., Tokyo (1969): 1163-1170 [35].- 37. On the helicoid precession: its stability and an application to a re-entry problem (with G. Reehl.). Proc. XXth Intl. Astron. Congress, Buenos Aires, Argentina (1969): 491-496 [37].- 38. Orientation of the angular momentum vector of a space vehicle at the end of spin-up. Proc. XXIInd Intl. Astron. Congress, Brussels, Belgium, 1971 [41].- 39. The stability of a class of helicoid precessions in the sense of Liapunov and Poincare. Proc. Acad. of Athens, V. 17 (1972): 102-110 [43].- 3. Separatrices of Dynamical Systems.- 40. On the separatrices of dynamical systems, Proc. Athens Acad. Sci., V. 54 (1979): 264-287 [52].- 41. Separatrices of dynamical systems. Proc. IXth Conf. on Nonlinear Oscillations, Kiev., 1981 (Yu.A. Mitropolsky, ed.), Ukrainian Acad. Sci. (Math. Inst.) Kiev. Naukova Dumka (1984): 280-287.- Appendix: Papers in Russian.- 42. Nonlinear differential equations with several general solutions, Ukr. Math. J., Ukrainian Acad. Sci., V. 30, no. 2 (1978): 238-241 [50b].- 43. Unification of stability concepts. Philadelphia: Genl. Electric Co., R.S.D., 1980, Math. Fizika, Ukrainian Acad. Sci., V. 33 (1983): 16-21 [53].- Biographical note of D.G. Magiros.- Complete chronological list of Magiros' publications.- Magiros' unpublished works.