Get Free Shipping on orders over $79
Statistical Methods for Data Analysis in Particle Physics : Physics and Astronomy (R0) - Luca Lista

Statistical Methods for Data Analysis in Particle Physics

By: Luca Lista

eText | 13 October 2017 | Edition Number 2

At a Glance

eText


$129.00

or 4 interest-free payments of $32.25 with

 or 

Instant online reading in your Booktopia eTextbook Library *

Why choose an eTextbook?

Instant Access *

Purchase and read your book immediately

Read Aloud

Listen and follow along as Bookshelf reads to you

Study Tools

Built-in study tools like highlights and more

* eTextbooks are not downloadable to your eReader or an app and can be accessed via web browsers only. You must be connected to the internet and have no technical issues with your device or browser that could prevent the eTextbook from operating.

This concise set of course-based notes provides the reader with the main concepts and tools needed to perform statistical analyses of experimental data, in particular in the field of high-energy physics (HEP).

First, the book provides an introduction to probability theory and basic statistics, mainly intended as a refresher from readers' advanced undergraduate studies, but also to help them clearly distinguish between the Frequentist and Bayesian approaches and interpretations in subsequent applications. More advanced concepts and applications are gradually introduced, culminating in the chapter on both discoveries and upper limits, as many applications in HEP concern hypothesis testing, where the main goal is often to provide better and better limits so as to eventually be able to distinguish between competing hypotheses, or to rule out some of them altogether.

Many worked-out examples will help newcomers to the field and graduate students alike understand the pitfalls involved in applying theoretical concepts to actual data.

This new second edition significantly expands on the original material, with more background content (e.g. the Markov Chain Monte Carlo method, best linear unbiased estimator), applications (unfolding and regularization procedures, control regions and simultaneous fits, machine learning concepts) and examples (e.g. look-elsewhere effect calculation).

on
Desktop
Tablet
Mobile

More in Probability & Statistics

Mathematics in Biology - Markus Meister

eBOOK

RRP $194.25

$155.99

20%
OFF
untitled - TBC ANZ

eBOOK

$31.99

Statistics by Simulation : A Synthetic Data Approach - Carsten F. Dormann

eBOOK

R for Non-Programmers - Daniel Dauber

eBOOK