Get Free Shipping on orders over $79
Stochastic Optimal Control in Infinite Dimension : Dynamic Programming and HJB Equations - Giorgio Fabbri

Stochastic Optimal Control in Infinite Dimension

Dynamic Programming and HJB Equations

By: Giorgio Fabbri, Fausto Gozzi, Andrzej ?wi?ch

eText | 22 June 2017

At a Glance

eText


$269.01

or 4 interest-free payments of $67.25 with

 or 

Instant online reading in your Booktopia eTextbook Library *

Why choose an eTextbook?

Instant Access *

Purchase and read your book immediately

Read Aloud

Listen and follow along as Bookshelf reads to you

Study Tools

Built-in study tools like highlights and more

* eTextbooks are not downloadable to your eReader or an app and can be accessed via web browsers only. You must be connected to the internet and have no technical issues with your device or browser that could prevent the eTextbook from operating.

Providing an introduction to stochastic optimal control in in?nite dimension, this book gives a complete account of the theory of second-order HJB equations in in?nite-dimensional Hilbert spaces, focusing on its applicability to associated stochastic optimal control problems. It features a general introduction to optimal stochastic control, including basic results (e.g. the dynamic programming principle) with proofs, and provides examples of applications. A complete and up-to-date exposition of the existing theory of viscosity solutions and regular solutions of second-order HJB equations in Hilbert spaces is given, together with an extensive survey of other methods, with a full bibliography. In particular, Chapter 6, written by M. Fuhrman and G. Tessitore, surveys the theory of regular solutions of HJB equations arising in in?nite-dimensional stochastic control, via BSDEs. The book is of interest to both pure and applied researchers working in the control theory of stochastic PDEs,and in PDEs in in?nite dimension. Readers from other ?elds who want to learn the basic theory will also ?nd it useful. The prerequisites are: standard functional analysis, the theory of semigroups of operators and its use in the study of PDEs, some knowledge of the dynamic programming approach to stochastic optimal control problems in ?nite dimension, and the basics of stochastic analysis and stochastic equations in in?nite-dimensional spaces.

on
Desktop
Tablet
Mobile

More in Differential Calculus & Equations

The Monodromy Group - Henryk ?o??dek

eTEXT