Get Free Shipping on orders over $79
Structural Reliability : Statistical Learning Perspectives - Jorge Eduardo Hurtado

Structural Reliability

Statistical Learning Perspectives

By: Jorge Eduardo Hurtado

eText | 11 November 2013

At a Glance

eText


$239.00

or 4 interest-free payments of $59.75 with

 or 

Instant online reading in your Booktopia eTextbook Library *

Why choose an eTextbook?

Instant Access *

Purchase and read your book immediately

Read Aloud

Listen and follow along as Bookshelf reads to you

Study Tools

Built-in study tools like highlights and more

* eTextbooks are not downloadable to your eReader or an app and can be accessed via web browsers only. You must be connected to the internet and have no technical issues with your device or browser that could prevent the eTextbook from operating.
The last decades have witnessed the development of methods for solving struc­ tural reliability problems, which emerged from the efforts of numerous re­ searchers all over the world. For the specific and most common problem of determining the probability of failure of a structural system in which the limit state function g( x) = 0 is only implicitly known, the proposed methods can be grouped into two main categories: • Methods based on the Taylor expansion of the performance function g(x) about the most likely failure point (the design point), which is determined in the solution process. These methods are known as FORM and SORM (First- and Second Order Reliability Methods, respectively). • Monte Carlo methods, which require repeated calls of the numerical (nor­ mally finite element) solver of the structural model using a random real­ ization of the basic variable set x each time. In the first category of methods only SORM can be considered of a wide applicability. However, it requires the knowledge of the first and second deriva­ tives of the performance function, whose calculation in several dimensions either implies a high computational effort when faced with finite difference techniques or special programs when using perturbation techniques, which nevertheless require the use of large matrices in their computations. In or­ der to simplify this task, use has been proposed of techniques that can be regarded as variants of the Response Surface Method.
on
Desktop
Tablet
Mobile

Other Editions and Formats

Paperback

Published: 20th July 2012

More in Heating

Residential Ventilation Handbook V3 - Paul H Raymer

eBOOK