Get Free Shipping on orders over $79
Structure Preserving Energy Functions in Power Systems : Theory and Applications - K.R. Padiyar

Structure Preserving Energy Functions in Power Systems

Theory and Applications

By: K.R. Padiyar

eText | 3 September 2018 | Edition Number 1

At a Glance

eText


$171.60

or 4 interest-free payments of $42.90 with

 or 

Instant online reading in your Booktopia eTextbook Library *

Why choose an eTextbook?

Instant Access *

Purchase and read your book immediately

Read Aloud

Listen and follow along as Bookshelf reads to you

Study Tools

Built-in study tools like highlights and more

* eTextbooks are not downloadable to your eReader or an app and can be accessed via web browsers only. You must be connected to the internet and have no technical issues with your device or browser that could prevent the eTextbook from operating.

A guide for software development of the dynamic security assessment and control of power systems, Structure Preserving Energy Functions in Power Systems: Theory and Applications takes an approach that is more general than previous works on Transient Energy Functions defined using Reduced Network Models. A comprehensive presentation of theory and applications, this book:

  • Describes the analytics of monitoring and predicting dynamic security and emergency control through the illustration of theory and applications of energy functions defined on structure preserving models
  • Covers different facets of dynamic analysis of large bulk power systems such as system stability evaluation, dynamic security assessment, and control, among others
  • Supports illustration of SPEFs using examples and case studies, including descriptions of applications in real-time monitoring, adaptive protection, and emergency control
  • Presents a novel network analogy based on accurate generator models that enables an accurate, yet simplified approach to computing total energy as the aggregate of energy in individual components

The bookpresents analytical tools for online detection of loss of synchronism and suggests adaptive system protection. It covers the design of effective linear damping controllers using FACTS, for damping small oscillations during normal operation to prevent transition to emergency states, and emergency control based on FACTS, to improve first swing stability and also provide rapid damping of nonlinear oscillations that threaten system security during major disturbances. The author includes detection and control algorithms derived from theoretical considerations and illustrated through several examples and case studies on text systems.

on
Desktop
Tablet
Mobile

Other Editions and Formats

Paperback

Published: 27th October 2017

Available for Backorder. We will order this from our supplier however there isn't a current ETA.

More in Electrical Engineering