Swarm Intelligence and Evolutionary Computation : Theory, Advances and Applications in Machine Learning and Deep Learning - Georgios Kouziokas
eTextbook alternate format product

Instant online reading.
Don't wait for delivery!

Swarm Intelligence and Evolutionary Computation

Theory, Advances and Applications in Machine Learning and Deep Learning

By: Georgios Kouziokas (Editor)

Paperback | 7 October 2024

At a Glance

Paperback


RRP $98.99

$84.50

15%OFF

or 4 interest-free payments of $21.13 with

 or 

Aims to ship in 7 to 10 business days

The aim of this book is to present and analyse theoretical advances and also emerging practical applications of swarm and evolutionary intelligence. It comprises nine chapters. Chapter 1 provides a theoretical introduction of the computational optimization techniques regarding the gradient-based methods such as steepest descent, conjugate gradient, newton and quasi-Newton methods and also the non-gradient methods such as genetic algorithm and swarm intelligence algorithms. Chapter 2, discusses evolutionary computation techniques and genetic algorithm. Swarm intelligence theory and particle swarm optimization algorithm are reviewed in Chapter 3. Also, several variations of particle swarm optimization algorithm are analysed and explained such as Geometric PSO, PSO with mutation, Chaotic PSO with mutation, multi-objective PSO and Quantum mechanics â" based PSO algorithm. Chapter 4 deals with two essential colony bio-inspired algorithms: Ant colony optimization (ACO) and Artificial bee colony (ABC). Chapter 5, presents and analyses Cuckoo search and Bat swarm algorithms and their latest variations. In chapter 6, several other metaheuristic algorithms are discussed such as: Firefly algorithm (FA), Harmony search (HS), Cat swarm optimization (CSO) and their improved algorithm modifications. The latest Bio-Inspired Swarm Algorithms are discussed in chapter 7, such as: Grey Wolf Optimization (GWO) Algorithm, Whale Optimization Algorithm (WOA), Grasshopper Optimization Algorithm (GOA) and other algorithm variations such as binary and chaotic versions. Chapter 8 presents machine learning applications of swarm and evolutionary algorithms. Illustrative real-world examples are presented with real datasets regarding neural network optimization and feature selection, using: genetic algorithm, Geometric PSO, Chaotic Harmony Search, Chaotic Cuckoo Search, and Evolutionary Algorithm and also crime forecasting using swarm optimized SVM. In chapter 9, applications of swarm intelligence on deep long short-term memory (LSTM) networks and Deep Convolutional Neural Networks (CNNs) are discussed, including LSTM hyperparameter tuning and Covid19 diagnosis from chest X-Ray images. The aim of the book is to present and discuss several state-of-theart swarm intelligence and evolutionary algorithms together with their variances and also several illustrative applications on machine learning and deep learning.

More in Applied Mathematics

Fuzzy Methods for Assessment and Decision Making - Michael Gr. Voskoglou

RRP $264.95

$234.95

11%
OFF
Hybrid Nanofluids : Heat and Mass Transfer Processes - Manjakuppam  Malika

RRP $273.00

$226.95

17%
OFF
Essentials of Medical Statistics : 2nd Edition - Betty R. Kirkwood

RRP $91.95

$59.90

35%
OFF
The Maths Book : Big Ideas Simply Explained - DK

RRP $42.99

$32.50

24%
OFF
Love Triangle : The Life-changing Magic of Trigonometry - Matt Parker
I am Tim : Life, Politics and Beyond - Peter Rees

RRP $40.00

$31.75

21%
OFF
Game Theory : 2nd edition - Eilon  Solan

RRP $106.95

$91.25

15%
OFF
Playing with Shape and Form : A Glimpse of Topology - Richard Evan Schwartz
Asymptotics for Fractional Processes - James Davidson
Statistics Unplugged - Sally Caldwell

$313.75

Engineering Mathematics : 5th edition - Anthony Croft

RRP $147.95

$113.75

23%
OFF
Introduction to Stochastic Processes : 2nd Edition - Gregory F.  Lawler

RRP $210.00

$161.75

23%
OFF