Preface | p. v |
Introduction | p. 1 |
Gaussians, Spherical Inversion, and the Heat Kernel | |
Spherical Inversion on SL2(C) | p. 13 |
The Iwasawa Decomposition, Polar Decomposition, and Characters | p. 15 |
Characters | p. 16 |
K-bi-invariant Functions | p. 17 |
Haar Measures | p. 19 |
The Harish Transform and the Orbital Integral | p. 23 |
The Mellin and Spherical Transforms | p. 25 |
Computation of the Orbital Integral | p. 28 |
Gaussians on G and Their Spherical Transform | p. 32 |
The Polar Height | p. 35 |
The Polar Haar Measure and Inversion | p. 37 |
Point-Pair Invariants, the Polar Height, and the Polar Distance | p. 41 |
The Heat Gaussian and Heat Kernel | p. 45 |
Dirac Families of Gaussians | p. 45 |
Scaling | p. 46 |
Decay Property | p. 48 |
Convolution, Semigroup, and Approximations Properties | p. 49 |
Approximation Properties | p. 51 |
Complexifying t and the Null Space of Heat Convolution | p. 54 |
The Casimir Operator | p. 55 |
Scaling | p. 62 |
The Heat Equation | p. 63 |
Scaling | p. 65 |
QED, LEG, Transpose, and Casimir | p. 67 |
Growth and Decay, QED and LEG | p. 67 |
Casimir, Transpose, and Harmonicity | p. 70 |
DUTIS | p. 76 |
Heat and Casimir Eigenfunctions | p. 78 |
Enter ¿: The General Trace Formula | |
Convergence and Divergence of the Selberg Trace | p. 85 |
The Hermitian Norm | p. 86 |
Divergence for Standard Cuspidal Elements | p. 89 |
Cuspidal and Parabolic Subgroups | p. 89 |
Convergence for the Other Elements of | p. 92 |
The Cuspidal and Noncuspidal Traces | p. 97 |
Some Group Theory | p. 98 |
Conjugacy Classes | p. 101 |
The Double Trace and its Decomposition | p. 102 |
Explicit Determination of the Noncuspidal Terms | p. 106 |
The Volume Computation | p. 107 |
The Orbital Integral | p. 108 |
Cuspidal Conjugacy Classes | p. 110 |
The Heat Kernel on ¿G/K | |
The Fundamental Domain | p. 117 |
SL2(C) and the Upper Half-Space H3 | p. 118 |
Fundamental Domain and ¿ | p. 121 |
Finiteness Properties | p. 124 |
Uniformities in Lemma 6.2.3 | p. 130 |
Integration on ¿G/K | p. 131 |
Other Fundamental Domains | p. 133 |
¿-Periodization of the Heat Kernel | p. 135 |
The Basic Estimate | p. 135 |
Convolution | p. 136 |
Heat Convolution and Eigenfunctions on ¿G/K | p. 140 |
Casimir on ¿G/K | p. 145 |
Measure-Theoretic Estimate for Convolution on ¿G | p. 147 |
Asymptotic Behavior of K¿t for t | p. 149 |
Heat Kernel Convolution on I&sp (¿G/K) | p. 151 |
General Criteria for Compactness | p. 152 |
Estimates for the - Periodization | p. 155 |
Fourier Series for the Periodizations of Gaussians | p. 157 |
Preliminaries: The r and Periodizations | p. 157 |
The Fourier Series | p. 158 |
The Convolution Cuspidal Estimate | p. 160 |
Application to the Heat Kernel | p. 161 |
Fourier-Eisenstein Eigenfunction Expansions | |
The Tube Domain for ¿ | p. 167 |
Differential-Geometric Aspects | p. 167 |
The Tube of FRand its Boundary Relation with 3R | p. 169 |
The F-Normalizer of ¿ | p. 171 |
Totally Geodesic Surface in H3 | p. 172 |
The Half-Plane H2j | p. 173 |
Some Boundary Behavior of F in H3 Under ¿ | p. 175 |
The Faces Bi of & and their Boundaries | p. 175 |
H-triangle | p. 176 |
Isometrics of F | p. 178 |
The Group ¿ and a Basic Boundary Inclusion | p. 180 |
The Set y, its Boundary Behavior, and the Tube T | p. 181 |
Tilings | p. 182 |
Coset Representatives | p. 184 |
Truncations | p. 185 |
The ¿uU-Fourier Expansion of Eisenstein Series | p. 191 |
Our Goal: The Eigenfunction Expansion | p. 191 |
Epstein and Eisenstein Series | p. 193 |
The K-Bessel Function | p. 197 |
Gamma Function Identities | p. 199 |
Differential and Difference Relations | p. 201 |
Functional Equation of the Dedekind Zeta Function | p. 202 |
The Bessel-Fourier ¿UU-Expansion of Eisenstein Series | p. 206 |
The Constant Term | p. 211 |
Estimates in Vertical Strips | p. 21313 |
The Integral over F and Orthogonalities | p. 218 |
Adjointness Formula and the ¿G-Eigenfunction Expansion | p. 223 |
Haar Measure and the Mellin Transform | p. 224 |
Appendix on Fourier Inversion | p. 226 |
Adjointness Formula and the Constant Term | p. 229 |
Adjointness Formula | p. 230 |
The Eisenstein Coefficient E*f and the Expansion for/ e C(¿G/K) | p. 232 |
The Heat Kernel Eigenfunction Expansion | p. 237 |
The Eisenstein-Cuspidal Affair | |
The Eisenstein Y-Asymptotics | p. 243 |
The Improper Integral of Eigenfunction Expansion over ¿G | p. 243 |
¿2-Cuspidal Trace | p. 244 |
Green's Theorem on F<Y | p. 247 |
Application to Eisenstein Functions | p. 251 |
The Constant-Term Integral Asymptotics | p. 255 |
Appendix | p. 257 |
The Nonconstant-Term Error Estimate | p. 258 |
The Cuspidal Trace Y-Asymptotics | p. 261 |
The Nonregular Cuspidal Integral over &<Y | p. 262 |
Asymptotic Expansion of the Nonregular Cuspidal Trace | p. 267 |
The Regular Cuspidal Integral overF<Y | p. 272 |
Nonspecial Regular Cuspidal Asymptotics | p. 275 |
Action of the Special Subset | p. 277 |
Special Regular Cuspidal Asymptotics | p. 280 |
Analytic Evaluations | p. 287 |
Partial Sums Asymptotics for úQand the Euler Constant | p. 287 |
Estimates Using Lattice-Point Counting | p. 290 |
Partial-Sums Asymptotics for úQ and the Euler Constant | p. 292 |
The Hurwitz Constant | p. 296 |
The Complex Case, with Z[i] | p. 297 |
Average of the Hurwitz Constant | p. 298 |
Jq f9(r)rh(r)dr when (p = gr | p. 301 |
Evaluation of C'yo and C1 | p. 303 |
The Theta Inversion Formula | p. 308 |
References | p. 311 |
Index | p. 317 |
Table of Contents provided by Ingram. All Rights Reserved. |