Get Free Shipping on orders over $79
Topology Optimization Theory for Laminar Flow : Applications in Inverse Design of Microfluidics - Yongbo Deng

Topology Optimization Theory for Laminar Flow

Applications in Inverse Design of Microfluidics

By: Yongbo Deng, Yihui Wu, Zhenyu Liu

eText | 27 September 2017

At a Glance

eText


$239.00

or 4 interest-free payments of $59.75 with

 or 

Instant online reading in your Booktopia eTextbook Library *

Why choose an eTextbook?

Instant Access *

Purchase and read your book immediately

Read Aloud

Listen and follow along as Bookshelf reads to you

Study Tools

Built-in study tools like highlights and more

* eTextbooks are not downloadable to your eReader or an app and can be accessed via web browsers only. You must be connected to the internet and have no technical issues with your device or browser that could prevent the eTextbook from operating.

This book presents the topology optimization theory for laminar flows with low and moderate Reynolds numbers, based on the density method and level-set method, respectively. The density-method-based theory offers efficient convergence, while the level-set-method-based theory can provide anaccurate mathematical expression of the structural boundary.

Unsteady, body-force-driven and two-phase properties are basic characteristics of the laminar flows. The book discusses these properties, which are typical of microfluidics and one of the research hotspots in the area of Micro-Electro-Mechanical Systems (MEMS), providing an efficient inverse design approach for microfluidic structures. To demonstrate the applications of this topology optimization theory in the context of microfluidics, it also investigates inverse design for the micromixer, microvalve and micropump, which are key elements in lab-on-chip devices.

on
Desktop
Tablet
Mobile

More in Mechanical Engineering

The Railways of Northern England in the 1960s - Michael Clemens

eBOOK

Construction Management Fundamentals, Third Edition - Kraig Knutson

eBOOK