Get Free Shipping on orders over $79
Training Data for Machine Learning : Human Supervision from Annotation to Data Science - Anthony  Sarkis

Training Data for Machine Learning

Human Supervision from Annotation to Data Science

By: Anthony Sarkis

eText | 8 November 2023 | Edition Number 1

At a Glance

eText


$64.89

or 4 interest-free payments of $16.22 with

 or 

Instant online reading in your Booktopia eTextbook Library *

Why choose an eTextbook?

Instant Access *

Purchase and read your book immediately

Read Aloud

Listen and follow along as Bookshelf reads to you

Study Tools

Built-in study tools like highlights and more

* eTextbooks are not downloadable to your eReader or an app and can be accessed via web browsers only. You must be connected to the internet and have no technical issues with your device or browser that could prevent the eTextbook from operating.

Your training data has as much to do with the success of your data project as the algorithms themselves because most failures in AI systems relate to training data. But while training data is the foundation for successful AI and machine learning, there are few comprehensive resources to help you ace the process.

In this hands-on guide, author Anthony Sarkis--lead engineer for the Diffgram AI training data software--shows technical professionals, managers, and subject matter experts how to work with and scale training data, while illuminating the human side of supervising machines. Engineering leaders, data engineers, and data science professionals alike will gain a solid understanding of the concepts, tools, and processes they need to succeed with training data.

With this book, you'll learn how to:

  • Work effectively with training data including schemas, raw data, and annotations
  • Transform your work, team, or organization to be more AI/ML data-centric
  • Clearly explain training data concepts to other staff, team members, and stakeholders
  • Design, deploy, and ship training data for production-grade AI applications
  • Recognize and correct new training-data-based failure modes such as data bias
  • Confidently use automation to more effectively create training data
  • Successfully maintain, operate, and improve training data systems of record
on
Desktop
Tablet
Mobile

More in Artificial Intelligence

HBR Guide to Generative AI for Managers : HBR Guide - Elisa Farri

eBOOK

AI-Powered Search - Trey Grainger

eBOOK

AI : The End of Human Race - Alex Wood

eBOOK