Get Free Shipping on orders over $79
Ultraprecision Machining of Hybrid Freeform Surfaces Using Multiple-Axis Diamond Turning : Springer Theses - Dennis Wee Keong Neo

Ultraprecision Machining of Hybrid Freeform Surfaces Using Multiple-Axis Diamond Turning

By: Dennis Wee Keong Neo

eText | 24 April 2017

At a Glance

eText


$189.00

or 4 interest-free payments of $47.25 with

 or 

Instant online reading in your Booktopia eTextbook Library *

Why choose an eTextbook?

Instant Access *

Purchase and read your book immediately

Read Aloud

Listen and follow along as Bookshelf reads to you

Study Tools

Built-in study tools like highlights and more

* eTextbooks are not downloadable to your eReader or an app and can be accessed via web browsers only. You must be connected to the internet and have no technical issues with your device or browser that could prevent the eTextbook from operating.

This thesis focuses on producing hybrid freeform surfaces using an advanced diamond-turning process, understanding the generation of surface accuracies (form errors) and how the choice of cutting strategies affects these, as well as simplifying the complications of generating cutting paths for such freeform surfaces. The breakthroughs behind this thesis are the development of novel, multiple-axis, diamond turning techniques to overcome the limitations of conventional diamond turning processes, an analytical model to optimize the generation of ultraprecise freeform surfaces, and an add-on tool path processor for CAD/CAM software solutions. It appeals to researchers and scholars with a strong machining background who are interested in the field of manufacturing ultraprecise freeform surfaces or in the field of optimizing ultraprecision machining processes.

on
Desktop
Tablet
Mobile

More in Industrial Chemistry & Manufacturing Technologies