
Vitushkin's Conjecture for Removable Sets
Vitushkin's Conjecture for Removable Sets
By: James Dudziak
eText | 3 February 2011
At a Glance
ePUB
eText
$84.99
or 4 interest-free payments of $21.25 with
orInstant online reading in your Booktopia eTextbook Library *
Why choose an eTextbook?
Instant Access *
Purchase and read your book immediately
Read Aloud
Listen and follow along as Bookshelf reads to you
Study Tools
Built-in study tools like highlights and more
* eTextbooks are not downloadable to your eReader or an app and can be accessed via web browsers only. You must be connected to the internet and have no technical issues with your device or browser that could prevent the eTextbook from operating.
Vitushkin's conjecture, a special case of Painleve's problem, states that a compact subset of the complex plane with finite linear Hausdorff measure is removable for bounded analytic functions if and only if it intersects every rectifiable curve in a set of zero arc length measure. Chapters 6-8 of this carefully written text present a major recent accomplishment of modern complex analysis, the affirmative resolution of this conjecture. Four of the five mathematicians whose work solved Vitushkin's conjecture have won the prestigious Salem Prize in analysis.
Chapters 1-5 of this book provide important background material on removability, analytic capacity, Hausdorff measure, arc length measure, and Garabedian duality that will appeal to many analysts with interests independent of Vitushkin's conjecture. The fourth chapter contains a proof of Denjoy's conjecture that employs Melnikov curvature. A brief postscript reports on a deep theorem of Tolsa and its relevance to going beyond Vitushkin's conjecture. Although standard notation is used throughout, there is a symbol glossary at the back of the book for the reader's convenience.
This text can be used for a topics course or seminar in complex analysis. To understand it, the reader should have a firm grasp of basic real and complex analysis.
on
ISBN: 9781441967091
ISBN-10: 1441967095
Series: Universitext
Published: 3rd February 2011
Format: ePUB
Language: English
Publisher: Springer Nature
























