General Introduction to Karst | p. 1 |
Origin and Meaning of the Term Karst | p. 3 |
Types of Karst | p. 3 |
The Karstification Process | p. 6 |
Role of Tectonics in the Process of Karstification | p. 7 |
Depth of Karstification | p. 8 |
Karst Porosity | p. 11 |
Basic Geomorphological Features | p. 13 |
Karst Springs | p. 20 |
Ponors (Swallowholes) | p. 22 |
Estavelles | p. 23 |
Submarine Springs | p. 24 |
Subsidence and Collapse | p. 25 |
References | p. 29 |
Groundwater in Karst | p. 31 |
Basic Theories on Karst Groundwater Circulation | p. 33 |
Karst Aquifer | p. 34 |
Evolution of Karst Aquifers | p. 36 |
Fluctuation of the Water Table | p. 38 |
Average Velocity of Water Flow in Karst | p. 38 |
References | p. 40 |
Underground Water Tapping | p. 43 |
General Approach | p. 45 |
Examples | p. 45 |
Spring Lez, France | p. 45 |
Spring Oko, Herzegovina | p. 47 |
Intake Structure, Zvir, Croatia | p. 47 |
Jergaly Spring, Slovakia | p. 48 |
Spanish Examples | p. 49 |
Atrita Spring | p. 49 |
Algeria Spring | p. 49 |
Deifontes Spring | p. 49 |
Los Santos Spring | p. 49 |
Brestovica Tapping Structure, Slovenia | p. 49 |
Rizana Spring, Slovenia | p. 49 |
Palata, Mali Zaton Spring, Croatia | p. 50 |
Kiveri Marine Dam, Greece | p. 50 |
Jama Spring, Herzegovina | p. 50 |
Opacica Spring, Yugoslavia | p. 52 |
Almiros Iraklion Spring, Crete | p. 55 |
Kotor Bay Springs, Yugoslavia | p. 56 |
Deep Wells in Kazerun, Iran | p. 57 |
Mrljis Spring, Yugoslavia | p. 58 |
Tapping Galleries | p. 59 |
Tapping of Water Intrusion under Pressure | p. 61 |
References | p. 64 |
Dams and Reservoirs: Inherent Risk | p. 67 |
Introduction | p. 69 |
Geological Predisposition to Risk | p. 71 |
Risk Types | p. 73 |
Time as a Risk Component | p. 74 |
Risk of an Ecological Nature | p. 75 |
Induced Seismicity | p. 75 |
Risk Reduction Strategy | p. 75 |
Acceptance of Risk | p. 76 |
References | p. 77 |
Dams and Reservoirs: Prevention and Remediation | p. 79 |
Introduction | p. 81 |
Data Needed for Grout Curtain Design | p. 82 |
Water Pressure Test: Lugeon Test | p. 83 |
Relationship between Water Pressure Tests (Lu) and Hydraulic Conductivity (k) | p. 85 |
Grout Curtain Position | p. 86 |
Grouting Criteria | p. 87 |
Grouting Depth | p. 88 |
Grouting Pressure | p. 89 |
Hydraulic Fracturing and Hydraulic Jacking | p. 92 |
Grouting Procedure | p. 93 |
Operational Procedures | p. 93 |
Grout Mass Consumption | p. 95 |
The GIN Principle | p. 97 |
Karstified Rock Flushing for Grouting | p. 98 |
Concentrated Leakage Impermeabilization | p. 100 |
Impermeabilization at the Surface of the Terrain | p. 101 |
Underground Sealing (Karst Channel Plugging) | p. 109 |
General Approach | p. 109 |
Materials and Technologies | p. 110 |
General Plugging Procedure | p. 112 |
Examples of Karst Channel Plugging | p. 113 |
Cut-Off (Diaphragm) Wall Sealing Technology | p. 118 |
Case Studies of Dams and Reservoirs: Watertightness, Failures, and Rehabilitation | p. 121 |
Douglas Dam, U.S. | p. 121 |
Hales Bar Dam, U.S. | p. 122 |
Great Falls Reservoir, U.S. | p. 122 |
Lar Dam, Iran | p. 123 |
Keban Dam, Turkey | p. 126 |
Sklope Dam, Croatia | p. 128 |
Canelles Dam, Spain | p. 131 |
Spilje, FYR Macedonia | p. 135 |
Khao Laem Dam, Thailand | p. 136 |
Karun I, Iran | p. 139 |
Camarassa, Spain | p. 139 |
Wolf Creek, U.S. | p. 142 |
Visegrad Dam, Bosnia and Herzegovina | p. 142 |
Grabovica Dam, Bosnia and Herzegovina | p. 144 |
El Cajon (Francisco Morazan) Dam, Honduras | p. 145 |
Oymapinar Dam, Turkey | p. 151 |
Mratinje (Piva) Dam, Yugoslavia | p. 153 |
Grancarevo Dam, Herzegovina | p. 156 |
Marun Dam, Iran | p. 158 |
Hutovo Compensation Reservoir, Bosnia and Herzegovina | p. 160 |
Busko Blato Reservoir, Bosnia and Herzegovina | p. 163 |
Niksicko Polje Reservoirs, Yugoslavia | p. 165 |
Slano Reservoir | p. 166 |
Vrtac Retention Basin | p. 169 |
Mornos Reservoir, Greece | p. 170 |
Perdika, Greece | p. 170 |
Mavrovo Reservoir, Macedonia (FYUR) | p. 171 |
May, Turkey | p. 172 |
Apa, Turkey | p. 172 |
Onac, Turkey | p. 173 |
Cevizli, Turkey | p. 173 |
Lone Pine, U.S. | p. 173 |
Dokan Dam, Iraq | p. 173 |
Ataturk Dam, Turkey | p. 174 |
Salakovac Dam, Bosnia and Herzegovina | p. 176 |
Wujiangdu Dam, China | p. 177 |
Berke Dam, Turkey | p. 179 |
Salman Farsi Dam, Iran | p. 180 |
Dam and Reservoir Construction on Conglomerate, Gypsum, and Anhydrite | p. 182 |
McMillan Dam, U.S. | p. 185 |
Kamskaya, Russia | p. 185 |
Mosul Dam, Iraq | p. 186 |
Huoshipo Reservoir, China | p. 187 |
References | p. 188 |
Underground Dams and Reservoirs | p. 193 |
Introduction | p. 195 |
General Underground Reservoir Classification | p. 195 |
Basic Features of Artificial Underground Storage | p. 195 |
Possible Concepts of Watertight Structures | p. 197 |
Advantages and Shortcomings of Underground Storage and Dams | p. 197 |
Examples and Projects | p. 198 |
Examples in China | p. 198 |
Yuhong Power Plant | p. 199 |
Beilou Power Plant | p. 200 |
Wulichong Reservoir | p. 200 |
Miyako Project, Japan | p. 202 |
Ombla Power Plant, Croatia | p. 205 |
Some Unfavorable Consequences of Underground Storage | p. 209 |
Flood Provoking | p. 209 |
Induced Collapse Failure | p. 209 |
Rock Instability and Local Seismic Activity | p. 211 |
References | p. 212 |
Karst Spring Submergence | p. 215 |
Introduction | p. 217 |
Trebisnjica Spring Submergence | p. 217 |
Dumanli Spring Submergence | p. 220 |
Neraidha Spring Submergence | p. 220 |
Pivsko Oko (Sinjac) Spring Submergence | p. 222 |
Rama Spring Submergence | p. 222 |
Yarg Spring Submergence | p. 222 |
References | p. 222 |
Tunneling in Karst: Common Problems | p. 223 |
Introduction | p. 225 |
Nature of Problems | p. 225 |
Investigation Needs | p. 225 |
Defects and Remediations | p. 226 |
Tunnel-Boring Machines in Karst | p. 231 |
Relocation of Tunnel Route | p. 232 |
Tunneling beneath Groundwater Level | p. 235 |
Role of Hydrogeology in Tunnel Construction Planning | p. 237 |
Plugging of Massive Inflows under Pressure into the Tunnel | p. 240 |
References | p. 241 |
Proposed Criteria for Groundwater Protection Zoning in Karst Regions | p. 243 |
Introduction | p. 245 |
Actual Zoning Concept Applied in Nonkarstic Areas | p. 245 |
Basic Hydrogeological Parameters for Zoning Criteria in Karst | p. 245 |
Criteria for Zoning | p. 247 |
Zone I: Protection Area of a Spring or Intake Structure for Drinking Water | p. 247 |
Zone II: Immediate Protection Area: Zone Requiring Very Severe Protection and Restriction | p. 247 |
Zone III: Protection Area | p. 247 |
Zone IV: External Protection Area | p. 248 |
Restrictions in Protection Zones | p. 248 |
Particulars of Zoning Procedures in Karst | p. 249 |
Water Quality Monitoring | p. 250 |
Protection Planing | p. 250 |
Case Study: Groundwater Protection Zones in Highly Developed Karst (Dubrovnik Area) | p. 250 |
References | p. 254 |
Groundwater Tracing Techniques | p. 255 |
Introduction | p. 257 |
Dye Tracers | p. 257 |
Common Salt | p. 262 |
Radioactive Isotopes | p. 263 |
Bromine-82 | p. 263 |
Iodine-131 | p. 264 |
Chromium-51 | p. 265 |
Tritium (3H) | p. 266 |
Postactivated Isotopes | p. 267 |
Smoke and Gaseous Tracers | p. 267 |
References | p. 269 |
Application of Geophysical Methods in Karst | p. 271 |
Introduction | p. 273 |
Geoelectrical Methods | p. 273 |
Geophysical Logging of Boreholes | p. 280 |
Geothermal Effects as a Consequence of Water Circulation through the Karst Conduits | p. 284 |
Investigation Procedure | p. 285 |
Ombla Spring: Thermal Measurements for Underground Flow Determination | p. 287 |
Temperature Measurements for Determination of Water Losses from Busko Blato Reservoir | p. 287 |
Maotiaohe 4th Dam: Geothermal Measurements | p. 290 |
Borehole Radar Method | p. 291 |
Borehole Radar Technique | p. 291 |
Ombla Spring Radar Investigations | p. 292 |
Electromagnetic VLF Method | p. 292 |
Geo-Bomb Method | p. 297 |
References | p. 297 |
Glossary | p. 301 |
Author Index | p. 305 |
Subject Index | p. 307 |
Table of Contents provided by Rittenhouse. All Rights Reserved. |