Why Prove it Again? : Alternative Proofs in Mathematical Practice - Jr. John W. Dawson

Why Prove it Again?

Alternative Proofs in Mathematical Practice

By: Jr. John W. Dawson

Hardcover | 24 July 2015

At a Glance

Hardcover


$166.84

or 4 interest-free payments of $41.71 with

 or 

Aims to ship in 7 to 10 business days

This monograph considers several well-known mathematical theorems and asks the question, "Why prove it again?" while examining alternative proofs. It explores the different rationales mathematicians may have for pursuing and presenting new proofs of previously established results, as well as how they judge whether two proofs of a given result are different. While a number of books have examined alternative proofs of individual theorems, this is the first that presents comparative case studies of other methods for a variety of different theorems.

The author begins by laying out the criteria for distinguishing among proofs and enumerates reasons why new proofs have, for so long, played a prominent role in mathematical practice. He then outlines various purposes that alternative proofs may serve. Each chapter that follows provides a detailed case study of alternative proofs for particular theorems, including the Pythagorean Theorem, the Fundamental Theorem of Arithmetic, Desargues' Theorem, the Prime Number Theorem, and the proof of the irreducibility of cyclotomic polynomials.

Why Prove It Again? will appeal to a broad range of readers, including historians and philosophers of mathematics, students, and practicing mathematicians. Additionally, teachers will find it to be a useful source of alternative methods of presenting material to their students.

Industry Reviews

"The book motivates and introduces its topic well and successively argues for the claim that comparative studies or proofs are a worthwhile occupation. All chapters are accessible to a generally informed mathematical audience, most of them to mathematical laymen with a basic knowledge of number theory and geometry." (Merlin Carl, Mathematical Reviews, April, 2016)

"This book addresses the question of why mathematicians prove certain fundamental theorems again and again. ... Each chapter is a historical account of how and why these theorems have been reproved several times throughout several centuries. The primary readers of this book will be historians or philosophers of mathematics ... ." (M. Bona, Choice, Vol. 53 (6), February, 2016)

"This is an impressive book, giving proofs, sketches, or ideas of proofs of a variety of fundamental theorems of mathematics, ranging from Pythagoras's theorem, through the fundamental theorems of arithmetic and algebra, to the compactness theorem of first-order logic. ... because of the many examples given, there should be something to suit everybody's taste ... ." (Jessica Carter, Philosophia Mathematica, February, 2016)

Other Editions and Formats

Paperback

Published: 22nd October 2016

More in History of Mathematics

Humble Pi : A Comedy of Maths Errors - Matt Parker

RRP $24.99

$22.95

The History of Correlation - John Nicholas Zorich
The History of Correlation - John Nicholas Zorich
The Golden Ratio : Divine Beauty of Mathematics - Rafael Araujo

RRP $55.00

$43.90

20%
OFF
Mathematics in Biology - Markus Meister

$333.75

Sir Isaac Newton : A Brief Account of His Life and Work - S. Brodetsky
The Rise of Statistical Thinking, 18201900 - Theodore M. Porter