A Neural Network Approach to Fluid Quantity Measurement in Dynamic Environments - Edin Terzic

eTEXT

A Neural Network Approach to Fluid Quantity Measurement in Dynamic Environments

By: Edin Terzic, Jenny Terzic, Romesh Nagarajah, Muhammad Alamgir

eText | 23 April 2012

At a Glance

eText


$159.01

or 4 interest-free payments of $39.75 with

 or 

Instant online reading in your Booktopia eTextbook Library *

Read online on
Desktop
Tablet
Mobile

Not downloadable to your eReader or an app

Why choose an eTextbook?

Instant Access *

Purchase and read your book immediately

Read Aloud

Listen and follow along as Bookshelf reads to you

Study Tools

Built-in study tools like highlights and more

* eTextbooks are not downloadable to your eReader or an app and can be accessed via web browsers only. You must be connected to the internet and have no technical issues with your device or browser that could prevent the eTextbook from operating.

Sloshing causes liquid to fluctuate, making accurate level readings difficult to obtain in dynamic environments. The measurement system described uses a single-tube capacitive sensor to obtain an instantaneous level reading of the fluid surface, thereby accurately determining the fluid quantity in the presence of slosh. A neural network based classification technique has been applied to predict the actual quantity of the fluid contained in a tank under sloshing conditions.

In A neural network approach to fluid quantity measurement in dynamic environments, effects of temperature variations and contamination on the capacitive sensor are discussed, and the authors propose that these effects can also be eliminated with the proposed neural network based classification system. To examine the performance of the classification system, many field trials were carried out on a running vehicle at various tank volume levels that range from 5 L to 50 L. The effectiveness of signal enhancement on the neural network based signal classification system is also investigated. Results obtained from the investigation are compared with traditionally used statistical averaging methods, and proves that the neural network based measurement system can produce highly accurate fluid quantity measurements in a dynamic environment. Although in this case a capacitive sensor was used to demonstrate measurement system this methodology is valid for all types of electronic sensors.

The approach demonstrated in A neural network approach to fluid quantity measurement in dynamic environments can be applied to a wide range of fluid quantity measurement applications in the automotive, naval and aviation industries to produce accurate fluid level readings. Students, lecturers, and experts will find the description of current research about accurate fluid level measurementin dynamic environments using neural network approach useful.

Read online on
Desktop
Tablet
Mobile

More in Engineering in General

SAFE : Science and Technology in the Age of Ter - Martha Baer

eBOOK

Star Commercial Spaces - Julio Fajardo

eBOOK

The Shabby Chic Home - Rachel Ashwell

eBOOK

Shabby Chic - Rachel Ashwell

eBOOK

$17.99