Advances in Partitioning Techniques : A Prospective towards Artificial Intelligence - Shankru Guggari

eTEXT

Advances in Partitioning Techniques

A Prospective towards Artificial Intelligence

By: Shankru Guggari, Umadevi V, Vijayakumar Kadappa

eText | 2 June 2025 | Edition Number 1

At a Glance

eText


$102.30

or 4 interest-free payments of $25.57 with

 or 

Available: 2nd June 2025

Preorder. Online access available after release.

Read online on
Desktop
Tablet
Mobile

Not downloadable to your eReader or an app

Why choose an eTextbook?

Instant Access *

Purchase and read your book immediately

Read Aloud

Listen and follow along as Bookshelf reads to you

Study Tools

Built-in study tools like highlights and more

* eTextbooks are not downloadable to your eReader or an app and can be accessed via web browsers only. You must be connected to the internet and have no technical issues with your device or browser that could prevent the eTextbook from operating.

This book discusses various partitioning strategies tailored for traditional machine learning algorithms. It examines how data can be divided efficiently to enhance the performance and scalability of classic machine learning models. It explores how partitioning methods can be applied to neural networks and other deep learning architectures and describes various ways to accelerate training, reduce memory consumption, and enhance overall efficiency.

Graphs are prevalent in various AI domains. This book is specifically designed for graph data structures using partitioning techniques and also explores insights into optimizing graph algorithms and analytics. With the explosion of data, efficient partitioning becomes crucial for processing large datasets. This book discusses various partitioning techniques that enable effective management and analysis of big data, enhancing speed and resource utilization. Edge computing demands resource-efficient strategies. It examines partitioning methods tailored for edge devices, enabling AI capabilities at the edge while addressing resource. This book showcases how partitioning techniques have been successfully applied across various AI domains. It demonstrates real-world scenarios where partitioning optimizes AI algorithms and systems.

By bridging the gap between theory and practical applications, this book intends to equip researchers, practitioners, and students with invaluable insights into harnessing partitioning for optimizing AI-driven systems, data processing, and problem-solving strategies. It describes the various advantages and disadvantages of partitioning techniques. This book is a vital resource, illuminating the path towards unlocking the full potential of partitioning in shaping the future of AI technologies.

Read online on
Desktop
Tablet
Mobile

More in Artificial Intelligence

AI-Powered Search - Trey Grainger

eBOOK