Add free shipping to your order with these great books
Algebraic Number Theory and Fermat's Last Theorem - Ian Stewart

eTEXT

Algebraic Number Theory and Fermat's Last Theorem

By: Ian Stewart, David Tall

eText | 7 February 2025 | Edition Number 5

At a Glance

eText


$104.50

or 4 interest-free payments of $26.13 with

 or 

Instant online reading in your Booktopia eTextbook Library *

Read online on
Desktop
Tablet
Mobile

Not downloadable to your eReader or an app

Why choose an eTextbook?

Instant Access *

Purchase and read your book immediately

Read Aloud

Listen and follow along as Bookshelf reads to you

Study Tools

Built-in study tools like highlights and more

* eTextbooks are not downloadable to your eReader or an app and can be accessed via web browsers only. You must be connected to the internet and have no technical issues with your device or browser that could prevent the eTextbook from operating.
Updated to reflect current research and extended to cover more advanced topics as well as the basics, Algebraic Number Theory and Fermat's Last Theorem, Fifth Edition introduces fundamental ideas of algebraic numbers and explores one of the most intriguing stories in the history of mathematics—the quest for a proof of Fermat's Last Theorem. The authors use this celebrated theorem to motivate a general study of the theory of algebraic numbers, initially from a relatively concrete point of view. Students will see how Wiles's proof of Fermat's Last Theorem opened many new areas for future work. New to the Fifth Edition Pell's Equation x^2-dy^2=1: all solutions can be obtained from a single `fundamental' solution, which can be found using continued fractions. Galois theory of number field extensions, relating the field structure to that of the group of automorphisms. More material on cyclotomic fields, and some results on cubic fields. Advanced properties of prime ideals, including the valuation of a fractional ideal relative to a prime ideal, localisation at a prime ideal, and discrete valuation rings. Ramification theory, which discusses how a prime ideal factorises when the number field is extended to a larger one. A short proof of the Quadratic Reciprocity Law based on properties of cyclotomic fields. This Valuations and p-adic numbers. Topology of the p-adic integers. Written by preeminent mathematicians Ian Stewart and David Tall, this text continues to teach students how to extend properties of natural numbers to more general number structures, including algebraic number fields and their rings of algebraic integers. It also explains how basic notions from the theory of algebraic numbers can be used to solve problems in number theory.
Read online on
Desktop
Tablet
Mobile

More in Mathematics

Men of Mathematics - E.T. Bell

eBOOK

Is God a Mathematician? - Mario Livio

eBOOK

X-Events : The Collapse of Everything - John L. Casti

eBOOK

RRP $24.19

$19.99

17%
OFF
Basic Mathematics : Collins College Outlines - Lawrence A. Trivieri

eBOOK