An Introduction to Mathematical Logic and Type Theory : To Truth Through Proof - Peter B. Andrews

eTEXT

An Introduction to Mathematical Logic and Type Theory

To Truth Through Proof

By: Peter B. Andrews

eText | 17 April 2013 | Edition Number 2

At a Glance

eText


$139.00

or 4 interest-free payments of $34.75 with

 or 

Instant online reading in your Booktopia eTextbook Library *

Read online on
Desktop
Tablet
Mobile

Not downloadable to your eReader or an app

Why choose an eTextbook?

Instant Access *

Purchase and read your book immediately

Read Aloud

Listen and follow along as Bookshelf reads to you

Study Tools

Built-in study tools like highlights and more

* eTextbooks are not downloadable to your eReader or an app and can be accessed via web browsers only. You must be connected to the internet and have no technical issues with your device or browser that could prevent the eTextbook from operating.
In case you are considering to adopt this book for courses with over 50 students, please contact ties.nijssen@springer.com  for more information. This introduction to mathematical logic starts with propositional calculus and first-order logic. Topics covered include syntax, semantics, soundness, completeness, independence, normal forms, vertical paths through negation normal formulas, compactness, Smullyan's Unifying Principle, natural deduction, cut-elimination, semantic tableaux, Skolemization, Herbrand's Theorem, unification, duality, interpolation, and definability. The last three chapters of the book provide an introduction to type theory (higher-order logic). It is shown how various mathematical concepts can be formalized in this very expressive formal language. This expressive notation facilitates proofs of the classical incompleteness and undecidability theorems which are very elegant and easy to understand. The discussion of semantics makes clear the important distinction between standard and nonstandard models which is so important in understanding puzzling phenomena such as the incompleteness theorems and Skolem's Paradox about countable models of set theory. Some of the numerous exercises require giving formal proofs. A computer program called ETPS which is available from the web facilitates doing and checking such exercises. Audience: This volume will be of interest to mathematicians, computer scientists, and philosophers in universities, as well as to computer scientists in industry who wish to use higher-order logic for hardware and software specification and verification.
Read online on
Desktop
Tablet
Mobile

Other Editions and Formats

Paperback

Published: 9th December 2010

More in Mathematical Logic

AI Breaking Boundaries - Avinash Vanam

eBOOK

A Mathematical Tour - Denis Bell

eTEXT

Partial Truths : How Fractions Distort Our Thinking - James C. Zimring

eBOOK

Logic in Computer Science - Hantao Zhang

eTEXT