Bayesian Models for Astrophysical Data : Using R, JAGS, Python, and Stan - Joseph M. Hilbe

eTEXT

Bayesian Models for Astrophysical Data

Using R, JAGS, Python, and Stan

By: Joseph M. Hilbe, Rafael S. de Souza, Emille E. O. Ishida

eText | 27 April 2017

At a Glance

eText


$135.95

or 4 interest-free payments of $33.99 with

 or 

Instant online reading in your Booktopia eTextbook Library *

Read online on
Desktop
Tablet
Mobile

Not downloadable to your eReader or an app

Why choose an eTextbook?

Instant Access *

Purchase and read your book immediately

Read Aloud

Listen and follow along as Bookshelf reads to you

Study Tools

Built-in study tools like highlights and more

* eTextbooks are not downloadable to your eReader or an app and can be accessed via web browsers only. You must be connected to the internet and have no technical issues with your device or browser that could prevent the eTextbook from operating.

This comprehensive guide to Bayesian methods in astronomy enables hands-on work by supplying complete R, JAGS, Python, and Stan code, to use directly or to adapt. It begins by examining the normal model from both frequentist and Bayesian perspectives and then progresses to a full range of Bayesian generalized linear and mixed or hierarchical models, as well as additional types of models such as ABC and INLA. The book provides code that is largely unavailable elsewhere and includes details on interpreting and evaluating Bayesian models. Initial discussions offer models in synthetic form so that readers can easily adapt them to their own data; later the models are applied to real astronomical data. The consistent focus is on hands-on modeling, analysis of data, and interpretations that address scientific questions. A must-have for astronomers, its concrete approach will also be attractive to researchers in the sciences more generally.

Read online on
Desktop
Tablet
Mobile

More in Probability & Statistics

Mathematics in Biology - Markus Meister

eBOOK

RRP $201.05

$160.99

20%
OFF
Statistics by Simulation : A Synthetic Data Approach - Carsten F. Dormann

eBOOK

Business Statistics - Knowledge Flow

eBOOK