Data-Centric Artificial Intelligence for Multidisciplinary Applications - Parikshit N Mahalle

eTEXT

Data-Centric Artificial Intelligence for Multidisciplinary Applications

By: Parikshit N Mahalle (Editor), Namrata Nishant Wasatkar (Editor), Gitanjali R. Shinde (Editor)

eText | 6 June 2024 | Edition Number 1

At a Glance

eText


$260.70

or 4 interest-free payments of $65.17 with

 or 

Instant online reading in your Booktopia eTextbook Library *

Read online on
Desktop
Tablet
Mobile

Not downloadable to your eReader or an app

Why choose an eTextbook?

Instant Access *

Purchase and read your book immediately

Read Aloud

Listen and follow along as Bookshelf reads to you

Study Tools

Built-in study tools like highlights and more

* eTextbooks are not downloadable to your eReader or an app and can be accessed via web browsers only. You must be connected to the internet and have no technical issues with your device or browser that could prevent the eTextbook from operating.

This book explores the need for a data-centric AI approach and its application in the multidisciplinary domain, compared to a model-centric approach. It examines the methodologies for data-centric approaches, the use of data-centric approaches in different domains, the need for edge AI and how it differs from cloud-based AI. It discusses the new category of AI technology, "data-centric AI" (DCAI), which focuses on comprehending, utilizing, and reaching conclusions from data. By adding machine learning and big data analytics tools, data-centric AI modifies this by enabling it to learn from data rather than depending on algorithms. It can therefore make wiser choices and deliver more precise outcomes. Additionally, it has the potential to be significantly more scalable than conventional AI methods.

• Includes a collection of case studies with experimentation results to adhere to the practical approaches

• Examines challenges in dataset generation, synthetic datasets, analysis, and prediction algorithms in stochastic ways

• Discusses methodologies to achieve accurate results by improving the quality of data

• Comprises cases in healthcare and agriculture with implementation and impact of quality data in building AI applications

Read online on
Desktop
Tablet
Mobile

More in Databases

China's Megatrends : The 8 Pillars of a New Society - John Naisbitt

eBOOK

AI-Powered Search - Trey Grainger

eBOOK