Data-Driven Wireless Networks : A Compressive Spectrum Approach - Yue Gao

Data-Driven Wireless Networks

A Compressive Spectrum Approach

By: Yue Gao, Zhijin Qin

eText | 19 October 2018

At a Glance

eText


$84.99

or 4 interest-free payments of $21.25 with

 or 

Instant online reading in your Booktopia eTextbook Library *

Read online on
Desktop
Tablet
Mobile

Not downloadable to your eReader or an app

Why choose an eTextbook?

Instant Access *

Purchase and read your book immediately

Read Aloud

Listen and follow along as Bookshelf reads to you

Study Tools

Built-in study tools like highlights and more

* eTextbooks are not downloadable to your eReader or an app and can be accessed via web browsers only. You must be connected to the internet and have no technical issues with your device or browser that could prevent the eTextbook from operating.

This SpringerBrief discusses the applications of spare representation in wireless communications, with a particular focus on the most recent developed compressive sensing (CS) enabled approaches. With the help of sparsity property, sub-Nyquist sampling can be achieved in wideband cognitive radio networks by adopting compressive sensing, which is illustrated in this brief, and it starts with a comprehensive overview of compressive sensing principles. Subsequently, the authors present a complete framework for data-driven compressive spectrum sensing in cognitive radio networks, which guarantees robustness, low-complexity, and security.

Particularly, robust compressive spectrum sensing, low-complexity compressive spectrum sensing, and secure compressive sensing based malicious user detection are proposed to address the various issues in wideband cognitive radio networks. Correspondingly, the real-world signals and data collected by experiments carried out during TV white space pilot trial enables data-driven compressive spectrum sensing. The collected data are analysed and used to verify our designs and provide significant insights on the potential of applying compressive sensing to wideband spectrum sensing.

This SpringerBrief provides readers a clear picture on how to exploit the compressive sensing to process wireless signals in wideband cognitive radio networks. Students, professors, researchers, scientists, practitioners, and engineers working in the fields of compressive sensing in wireless communications will find this SpringerBrief very useful as a short reference or study guide book. Industry managers, and government research agency employees also working in the fields of compressive sensing in wireless communications will find this SpringerBrief useful as well.

Read online on
Desktop
Tablet
Mobile

More in Mobile Phone Technology

Smartphone Nation - Dr Kaitlyn Regehr

eBOOK

Getting to Know Mobile GIS - Pinde Fu

eBOOK

RRP $116.99

$93.99

20%
OFF
The Core Network for 5G Advanced - Stefan Rommer

eBOOK

RRP $199.04

$179.99

10%
OFF