Designing Machine Learning Systems : An Iterative Process for Production-Ready Applications - Chip Huyen

eTEXT

Designing Machine Learning Systems

An Iterative Process for Production-Ready Applications

By: Chip Huyen

eText | 17 May 2022 | Edition Number 1

At a Glance

eText


$64.89

or 4 interest-free payments of $16.22 with

 or 

Instant online reading in your Booktopia eTextbook Library *

Read online on
Desktop
Tablet
Mobile

Not downloadable to your eReader or an app

Why choose an eTextbook?

Instant Access *

Purchase and read your book immediately

Read Aloud

Listen and follow along as Bookshelf reads to you

Study Tools

Built-in study tools like highlights and more

* eTextbooks are not downloadable to your eReader or an app and can be accessed via web browsers only. You must be connected to the internet and have no technical issues with your device or browser that could prevent the eTextbook from operating.

Machine learning systems are both complex and unique. Complex because they consist of many different components and involve many different stakeholders. Unique because they're data dependent, with data varying wildly from one use case to the next. In this book, you'll learn a holistic approach to designing ML systems that are reliable, scalable, maintainable, and adaptive to changing environments and business requirements.

Author Chip Huyen, co-founder of Claypot AI, considers each design decision--such as how to process and create training data, which features to use, how often to retrain models, and what to monitor--in the context of how it can help your system as a whole achieve its objectives. The iterative framework in this book uses actual case studies backed by ample references.

This book will help you tackle scenarios such as:

  • Engineering data and choosing the right metrics to solve a business problem
  • Automating the process for continually developing, evaluating, deploying, and updating models
  • Developing a monitoring system to quickly detect and address issues your models might encounter in production
  • Architecting an ML platform that serves across use cases
  • Developing responsible ML systems
Read online on
Desktop
Tablet
Mobile

More in Artificial Intelligence

AI-Powered Search - Trey Grainger

eBOOK

HBR Guide to Generative AI for Managers : HBR Guide - Elisa Farri

eBOOK

AI : The End of Human Race - Alex Wood

eBOOK