DevOps for Data Science : Chapman & Hall/CRC Data Science Series - Alex Gold

eTEXT

DevOps for Data Science

By: Alex Gold

eText | 19 June 2024 | Edition Number 1

At a Glance

eText


$90.20

or 4 interest-free payments of $22.55 with

 or 

Instant online reading in your Booktopia eTextbook Library *

Read online on
Desktop
Tablet
Mobile

Not downloadable to your eReader or an app

Why choose an eTextbook?

Instant Access *

Purchase and read your book immediately

Read Aloud

Listen and follow along as Bookshelf reads to you

Study Tools

Built-in study tools like highlights and more

* eTextbooks are not downloadable to your eReader or an app and can be accessed via web browsers only. You must be connected to the internet and have no technical issues with your device or browser that could prevent the eTextbook from operating.

Data Scientists are experts at analyzing, modelling and visualizing data but, at one point or another, have all encountered difficulties in collaborating with or delivering their work to the people and systems that matter. Born out of the agile software movement, DevOps is a set of practices, principles and tools that help software engineers reliably deploy work to production. This book takes the lessons of DevOps and aplies them to creating and delivering production-grade data science projects in Python and R.

This book's first section explores how to build data science projects that deploy to production with no frills or fuss. Its second section covers the rudiments of administering a server, including Linux, application, and network administration before concluding with a demystification of the concerns of enterprise IT/Administration in its final section, making it possible for data scientists to communicate and collaborate with their organization's security, networking, and administration teams.

Key Features:

• Start-to-finish labs take readers through creating projects that meet DevOps best practices and creating a server-based environment to work on and deploy them.
• Provides an appendix of cheatsheets so that readers will never be without the reference they need to remember a Git, Docker, or Command Line command.
• Distills what a data scientist needs to know about Docker, APIs, CI/CD, Linux, DNS, SSL, HTTP, Auth, and more.
• Written specifically to address the concern of a data scientist who wants to take their Python or R work to production.
There are countless books on creating data science work that is correct. This book, on the otherhand, aims to go beyond this, targeted at data scientists who want their work to be than merely accurate and deliver work that matters.

Read online on
Desktop
Tablet
Mobile

More in Economic Statistics

Business Statistics - Knowledge Flow

eBOOK

Human Development and the Data Revolution - Sanna Ojanperä

eBOOK

RRP $227.27

$204.99

10%
OFF
The Comeback Kings - Michael Smith

eBOOK