
eTEXT
At a Glance
eText
$302.50
or
Instant online reading in your Booktopia eTextbook Library *
Read online on
Desktop
Tablet
Mobile
Not downloadable to your eReader or an app
Why choose an eTextbook?
Instant Access *
Purchase and read your book immediately
Read Aloud
Listen and follow along as Bookshelf reads to you
Study Tools
Built-in study tools like highlights and more
* eTextbooks are not downloadable to your eReader or an app and can be accessed via web browsers only. You must be connected to the internet and have no technical issues with your device or browser that could prevent the eTextbook from operating.
Despite the vast research on energy optimization and process integration, there has to date been no synthesis linking these together. This book fills the gap, presenting optimization and integration in energy and process engineering. The content is based on the current literature and includes novel approaches developed by the authors.
Various thermal and chemical systems (heat and mass exchangers, thermal and water networks, energy converters, recovery units, solar collectors, and separators) are considered. Thermodynamics, kinetics and economics are used to formulate and solve problems with constraints on process rates, equipment size, environmental parameters, and costs.
Comprehensive coverage of dynamic optimization of energy conversion systems and separation units is provided along with suitable computational algorithms for deterministic and stochastic optimization approaches based on: nonlinear programming, dynamic programming, variational calculus, Hamilton-Jacobi-Bellman theory, Pontryagin's maximum principles, and special methods of process integration.
Integration of heat energy and process water within a total site is shown to be a significant factor reducing production costs, in particular costs of utilities for the chemical industry. This integration involves systematic design and optimization of heat exchangers and water networks (HEN and WN). After presenting basic, insight-based Pinch Technology, systematic, optimization-based sequential and simultaneous approaches to design HEN and WN are described. Special consideration is given to the HEN design problem targeting stage, in view of its importance at various levels of system design. Selected, advanced methods for HEN synthesis and retrofit are presented. For WN design a novel approach based on stochastic optimization is described that accounts for both grassroot and revamp design scenarios.
• Presents a unique synthesis of energy optimization and process integration that applies scientific information from thermodynamics, kinetics, and systems theory
• Discusses engineering applications including power generation, resource upgrading, radiation conversion and chemical transformation, in static and dynamic systems
• Clarifies how to identify thermal and chemical constraints and incorporate them into optimization models and solutions
• Presents a unique synthesis of energy optimization and process integration that applies scientific information from thermodynamics, kinetics, and systems theory
• Discusses engineering applications including power generation, resource upgrading, radiation conversion and chemical transformation, in static and dynamic systems
• Clarifies how to identify thermal and chemical constraints and incorporate them into optimization models and solutions
Various thermal and chemical systems (heat and mass exchangers, thermal and water networks, energy converters, recovery units, solar collectors, and separators) are considered. Thermodynamics, kinetics and economics are used to formulate and solve problems with constraints on process rates, equipment size, environmental parameters, and costs.
Comprehensive coverage of dynamic optimization of energy conversion systems and separation units is provided along with suitable computational algorithms for deterministic and stochastic optimization approaches based on: nonlinear programming, dynamic programming, variational calculus, Hamilton-Jacobi-Bellman theory, Pontryagin's maximum principles, and special methods of process integration.
Integration of heat energy and process water within a total site is shown to be a significant factor reducing production costs, in particular costs of utilities for the chemical industry. This integration involves systematic design and optimization of heat exchangers and water networks (HEN and WN). After presenting basic, insight-based Pinch Technology, systematic, optimization-based sequential and simultaneous approaches to design HEN and WN are described. Special consideration is given to the HEN design problem targeting stage, in view of its importance at various levels of system design. Selected, advanced methods for HEN synthesis and retrofit are presented. For WN design a novel approach based on stochastic optimization is described that accounts for both grassroot and revamp design scenarios.
• Presents a unique synthesis of energy optimization and process integration that applies scientific information from thermodynamics, kinetics, and systems theory
• Discusses engineering applications including power generation, resource upgrading, radiation conversion and chemical transformation, in static and dynamic systems
• Clarifies how to identify thermal and chemical constraints and incorporate them into optimization models and solutions
• Presents a unique synthesis of energy optimization and process integration that applies scientific information from thermodynamics, kinetics, and systems theory
• Discusses engineering applications including power generation, resource upgrading, radiation conversion and chemical transformation, in static and dynamic systems
• Clarifies how to identify thermal and chemical constraints and incorporate them into optimization models and solutions
Read online on
Desktop
Tablet
Mobile
ISBN: 9780080914428
ISBN-10: 008091442X
Published: 6th May 2009
Format: ePUB
Language: English
Number of Pages: 744
Publisher: Elsevier S & T
You Can Find This eBook In
This product is categorised by
- Non-FictionEngineering & TechnologyIndustrial Chemistry & Manufacturing TechnologiesIndustrial Chemistry
- Non-FictionSciencePhysics
- Non-FictionEngineering & TechnologyBiochemical Engineering
- Non-FictionEconomics
- Non-FictionIndustry & Industrial StudiesEnergy Industries & Utilities
- Non-FictionEngineering & TechnologyEnergy Technology & Engineering
- Non-FictionMathematicsOptimisation
- Non-FictionEngineering & TechnologyTechnology in GeneralEngineering in General
- Non-FictionScienceBiology, Life SciencesMicrobiology excluding Medical
- Non-FictionEngineering & TechnologyEnvironmental ScienceSanitary & Municipal EngineeringWater Supply & Treatment