Extending the Linear Model with R : 2nd Edition - Generalized Linear, Mixed Effects and Nonparametric Regression Models - Julian J. Faraway

eTEXT

Extending the Linear Model with R

2nd Edition - Generalized Linear, Mixed Effects and Nonparametric Regression Models

By: Julian J. Faraway

eText | 23 March 2016 | Edition Number 2

At a Glance

eText


$213.40

or 4 interest-free payments of $53.35 with

 or 

Instant online reading in your Booktopia eTextbook Library *

Read online on
Desktop
Tablet
Mobile

Not downloadable to your eReader or an app

Why choose an eTextbook?

Instant Access *

Purchase and read your book immediately

Read Aloud

Listen and follow along as Bookshelf reads to you

Study Tools

Built-in study tools like highlights and more

* eTextbooks are not downloadable to your eReader or an app and can be accessed via web browsers only. You must be connected to the internet and have no technical issues with your device or browser that could prevent the eTextbook from operating.
Start Analyzing a Wide Range of Problems

Since the publication of the bestselling, highly recommended first edition, R has considerably expanded both in popularity and in the number of packages available. Extending the Linear Model with R: Generalized Linear, Mixed Effects and Nonparametric Regression Models, Second Edition takes advantage of the greater functionality now available in R and substantially revises and adds several topics.

New to the Second Edition
  • Expanded coverage of binary and binomial responses, including proportion responses, quasibinomial and beta regression, and applied considerations regarding these models
  • New sections on Poisson models with dispersion, zero inflated count models, linear discriminant analysis, and sandwich and robust estimation for generalized linear models (GLMs)
  • Revised chapters on random effects and repeated measures that reflect changes in the lme4 package and show how to perform hypothesis testing for the models using other methods
  • New chapter on the Bayesian analysis of mixed effect models that illustrates the use of STAN and presents the approximation method of INLA
  • Revised chapter on generalized linear mixed models to reflect the much richer choice of fitting software now available
  • Updated coverage of splines and confidence bands in the chapter on nonparametric regression
  • New material on random forests for regression and classification
  • Revamped R code throughout, particularly the many plots using the ggplot2 package
  • Revised and expanded exercises with solutions now included
Demonstrates the Interplay of Theory and Practice

This textbook continues to cover a range of techniques that grow from the linear regression model. It presents three extensions to the linear framework: GLMs, mixed effect models, and nonparametric regression models. The book explains data analysis using real examples and includes all the R commands necessary to reproduce the analyses.

About the Author

Julian J. Faraway is a professor of statistics in the Department of Mathematical Sciences at the University of Bath. His research focuses on the analysis of functional and shape data with particular application to the modeling of human motion. He earned a PhD in statistics from the University of California, Berkeley.
Read online on
Desktop
Tablet
Mobile

More in Probability & Statistics

Mathematics in Biology - Markus Meister

eBOOK

RRP $201.05

$160.99

20%
OFF
Business Statistics - Knowledge Flow

eBOOK

Statistics by Simulation : A Synthetic Data Approach - Carsten F. Dormann

eBOOK