Extreme Statistics in Nanoscale Memory Design : Integrated Circuits and Systems - Amith Singhee

eTEXT

Extreme Statistics in Nanoscale Memory Design

By: Amith Singhee (Editor), Rob A. Rutenbar (Editor)

eText | 9 September 2010

At a Glance

eText


$209.00

or 4 interest-free payments of $52.25 with

 or 

Instant online reading in your Booktopia eTextbook Library *

Read online on
Desktop
Tablet
Mobile

Not downloadable to your eReader or an app

Why choose an eTextbook?

Instant Access *

Purchase and read your book immediately

Read Aloud

Listen and follow along as Bookshelf reads to you

Study Tools

Built-in study tools like highlights and more

* eTextbooks are not downloadable to your eReader or an app and can be accessed via web browsers only. You must be connected to the internet and have no technical issues with your device or browser that could prevent the eTextbook from operating.

Knowledge exists: you only have to ?nd it VLSI design has come to an important in?ection point with the appearance of large manufacturing variations as semiconductor technology has moved to 45 nm feature sizes and below. If we ignore the random variations in the manufacturing process, simulation-based design essentially becomes useless, since its predictions will be far from the reality of manufactured ICs. On the other hand, using design margins based on some traditional notion of worst-case scenarios can force us to sacri?ce too much in terms of power consumption or manufacturing cost, to the extent of making the design goals even infeasible. We absolutely need to explicitly account for the statistics of this random variability, to have design margins that are accurate so that we can ?nd the optimum balance between yield loss and design cost. This discontinuity in design processes has led many researchers to develop effective methods of statistical design, where the designer can simulate not just the behavior of the nominal design, but the expected statistics of the behavior in manufactured ICs. Memory circuits tend to be the hardest hit by the problem of these random variations because of their high replication count on any single chip, which demands a very high statistical quality from the product. Requirements of 5-6s (0.

Read online on
Desktop
Tablet
Mobile

More in Circuits & Components

Electromagnetics - steffano torres

eBOOK

Arduino Workshop - mark davies

eBOOK

Handbook of Computer Architecture - Anupam Chattopadhyay

eBOOK

RRP $969.00

$872.99

10%
OFF