Galerkin Finite Element Methods for Parabolic Problems - Vidar Thomee

eTEXT

Galerkin Finite Element Methods for Parabolic Problems

By: Vidar Thomee

eText | 25 June 2007 | Edition Number 2

At a Glance

eText


$289.00

or 4 interest-free payments of $72.25 with

 or 

Instant online reading in your Booktopia eTextbook Library *

Read online on
Desktop
Tablet
Mobile

Not downloadable to your eReader or an app

Why choose an eTextbook?

Instant Access *

Purchase and read your book immediately

Read Aloud

Listen and follow along as Bookshelf reads to you

Study Tools

Built-in study tools like highlights and more

* eTextbooks are not downloadable to your eReader or an app and can be accessed via web browsers only. You must be connected to the internet and have no technical issues with your device or browser that could prevent the eTextbook from operating.
My purpose in this monograph is to present an essentially self-contained account of the mathematical theory of Galerkin ?nite element methods as appliedtoparabolicpartialdi?erentialequations. Theemphasesandselection of topics re?ects my own involvement in the ?eld over the past 25 years, and my ambition has been to stress ideas and methods of analysis rather than to describe the most general and farreaching results possible. Since the formulation and analysis of Galerkin ?nite element methods for parabolic problems are generally based on ideas and results from the corresponding theory for stationary elliptic problems, such material is often included in the presentation. The basis of this work is my earlier text entitled Galerkin Finite Element Methods for Parabolic Problems, Springer Lecture Notes in Mathematics, No. 1054, from 1984. This has been out of print for several years, and I have felt a need and been encouraged by colleagues and friends to publish an updated version. In doingso I have included most of the contents of the 14 chapters of the earlier work in an updated and revised form, and added four new chapters, on semigroup methods, on multistep schemes, on incomplete iterative solution of the linear algebraic systems at the time levels, and on semilinear equations. The old chapters on fully discrete methods have been reworked by ?rst treating the time discretization of an abstract di?erential equation in a Hilbert space setting, and the chapter on the discontinuous Galerkin method has been completely rewritten.
Read online on
Desktop
Tablet
Mobile

Other Editions and Formats

Paperback

Published: 18th November 2010

More in Calculus & Mathematical Analysis

Basic Mathematics : Collins College Outlines - Lawrence A. Trivieri

eBOOK