Hyperbolic Conservation Laws in Continuum Physics - Constantine M. Dafermos

eTEXT

Hyperbolic Conservation Laws in Continuum Physics

By: Constantine M. Dafermos

eText | 16 January 2006 | Edition Number 2

At a Glance

eText


$159.01

or 4 interest-free payments of $39.75 with

 or 

Instant online reading in your Booktopia eTextbook Library *

Read online on
Desktop
Tablet
Mobile

Not downloadable to your eReader or an app

Why choose an eTextbook?

Instant Access *

Purchase and read your book immediately

Read Aloud

Listen and follow along as Bookshelf reads to you

Study Tools

Built-in study tools like highlights and more

* eTextbooks are not downloadable to your eReader or an app and can be accessed via web browsers only. You must be connected to the internet and have no technical issues with your device or browser that could prevent the eTextbook from operating.
The seeds of continuum physics were planted with the works of the natural philo- phers of the eighteenth century, most notably Euler; by the mid-nineteenth century, the trees were fully grown and ready to yield fruit. It was in this environment that the study of gas dynamics gave birth to the theory of quasilinear hyperbolic systems in divergence form, commonly called "hyperbolic conservation laws"; and these two subjects have been traveling hand in hand over the past one hundred and ?fty years. This book aims at presenting the theory of hyperbolic conservation laws from the standpoint of its genetic relation to continuum physics. Even though research is still marching at a brisk pace, both ?elds have attained by now the degree of maturity that would warrant the writing of such an exposition. Intherealmofcontinuumphysics,materialbodiesarerealizedascontinuous- dia, and so-called "extensive quantities", such as mass, momentum and energy, are monitored through the ?elds of their densities, which are related by balance laws and constitutive equations. A self-contained, though skeletal, introduction to this branch of classical physics is presented in Chapter II. The reader may ?esh it out with the help of a specialized text on the subject.
Read online on
Desktop
Tablet
Mobile

More in Differential Calculus & Equations

An Introduction to Applied Numerical Analysis - M Ali Hooshyar

eBOOK